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Abstract

Mandatory minimum staff-to-child ratios are a pervasive childcare market regula-
tion in the US, and yet little is known on their effects on children’s skills. This paper
builds an equilibrium model of the childcare market and uses it to simulate the dis-
tribution of children’s skills at preschool entry under various minimum mandatory
staff-to-child ratios. The model allows for rich family heterogeneity, an endogenous
distribution of childcare quality at each age, and endogenous wages that clear the
market for teachers and childcare workers. I prove identification and estimate the
model using both individual-level and state-level data. Counterfactual simulations
show that increasing the stringency of minimum mandatory staff-to-child ratios
increases the wages of childcare workers by up to 3% and wages of lead teachers by
up to 2.5%. Increasing the minimum number of adults per child has different effects
for one- and two-parent families. For one-parent families, it increases skills at the
right tail of the skill distribution and decreases skills at the bottom. For two-parent
families, gains are uniform across the skill distribution. Finally, these overall effects
on the skill distribution mask large heterogeneity: Increases in ratios’ stringency
translate into big skill gains for some children and large drops for others, and the
treatment effect distribution is more dispersed for children born to single mothers.
Skill redistribution happens mostly across two types of poor families. Children
born to poor families with higher substitution possibilities (more care from family
relatives available and assets) experience higher skill losses, whereas children born
to families less able to substitute away from paid care (less relative care available
and lower assets) experience higher skill gains.
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1 Introduction

Individuals’ skills are particularly malleable during early childhood and shape out-
comes later in life (Cunha and Heckman (2007), Cunha, Heckman and Schennach
(2010)). Moreover, returns to early childhood investment are very high (Heckman,
Garcia, Leaf and Prados (2017)). An important fraction of early childhood investment
is provided outside of the family, by market-based providers and public providers, and
these providers are subject to regulations that vary by state. In this paper, I study how
regulations in the childcare market affect the skills of children in different family types
through the type and quality of environments that those children grow up in.

The regulations I focus on are mandatory minimum staff-to-child ratios, which are
state-level regulations that determine the maximum number of children allowed per
adult in the classroom. Mandatory staff-to-child ratios vary substantially by state: For
instance, at 35 months old, the mandatory minimum staff-to-child ratio ranges from 1
adult per 4 children in Connecticut to 1 adult per 12 children in Mississippi.

From a normative perspective, the fact that policymakers in different states do
not agree on the stringency of these regulations, suggests that mandatory-minimum
ratios have important re-distributional impacts and state regulators in different states
maximize different social welfare functions.1

From a positive perspective, the large variation in the minimum staffing require-
ments faced by childcare providers across states is likely to have an impact on the cost
and quality of childcare provided in the market. This, in turn, can affect children born
to different types of households differently. In fact, using a difference-in-difference
strategy, Hotz and Xiao (2011) find that more stringent mandatory minimum staff-child
ratios decrease the provision of childcare, especially for low-income markets, but that
they also increase the quality of childcare provided.

Despite the evidence showing that mandatory minimum staff-to-child ratios have an
impact on the market provision of childcare, their implications for the skill distribution
of children are not well understood. On the one hand, their positive effect on the quality
of childcare provided should translate into a positive effect in the skills of children.
On the other hand, their negative impact on the quantity of childcare demanded can
translate into a negative effect on the skills of children if families substitute market-
provided childcare with options of inferior quality. Moreover, the extent to which either
effect dominates may depend on family characteristics. For instance, some families
may be intrinsically less prone to substitute away from market-provided care, maybe
because they have less relative care available, or because their economic resources make
it too costly for parents in those families to work less and look after their child. Children
born to those families are likely to experience the positive effects of the increase in
quality caused by regulations and are less likely to experience the negative effect due to
the substitution of care in favor of childcare arrangements of inferior quality. Instead,
children who spend fewer hours in market-provided childcare as a consequence of the
regulation may experience skill losses if the alternative childcare arrangements that

1It could also be that the primitives that are relevant to determine optimal regulations are very
different across states
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they experience are of inferior quality. Finally, since regulations affect the demand for
quantity and quality of childcare, they can also affect the demand for inputs in childcare
production, in particular the demand for teachers and other staff members. This may
translate into an equilibrium effect on the wages of teachers and childcare workers,
which in turn can amplify or attenuate the partial equilibrium effects of regulations
(holding wages of teachers and childcare workers constant) on the demand for childcare
quantity and quality for different family types.

In order to study the impact of mandatory minimum staff-to-child ratios, I build an
equilibrium model of the US childcare market in which heterogeneous families make
decisions about how much time their child spends in each type of childcare arrange-
ment (maternal, paternal, relative, or paid childcare), the quality of paid childcare that
they buy, and the type of paid childcare provider (center-based or home-based). Paid
childcare is provided by center-based and home-based care providers, who face differ-
ent regulations for each age, and take wages of lead teachers and childcare workers as
given. The wages of Lead Teachers and Childcare Workers equate demand and supply
in their respective labor markets.

As shown by Flood, McMurry, Sojourner and Wiswall (2021), the quality of parental
and relative care available to families of different socieconomic status is very hetero-
geneous. Capturing this heterogeneity is crucial because the quality of non-market
childcare arrangements available to families mediates the impact on skills of policies
that induce reallocation from paid childcare to unpaid childcare. Moreover, the extent
to which families can substitute paid for unpaid childcare services depends on the
availability of free relative care and the opportunity cost of maternal and paternal care.
Because of this, I let families in my model be heterogeneous in the quality of maternal,
paternal, and relative care, the availability of relative care, the wages of mothers and
fathers, and their initial level of assets.

The model that I build in this paper has several features that make it an attrac-
tive tool to analyze childcare market policies. First, it allows for rich heterogeneity.
On the demand side, families are heterogeneous in terms of wages, assets, parenting
quality, relative care quality, and relative care availability, all of which are relevant
for understanding the impact of policies that induce reallocation across childcare ar-
rangements. On the supply side, the model features an endogenous distribution of
quality supplied by center-based and home-based care providers and an endogenous
price-quality gradient that is affected by regulations. Moreover, in this model childcare
market policies can also affect the price of childcare by affecting the wages of teachers,
which are also endogenous. Second, I prove that the model is identified from a combi-
nation of individual-level and state-level data. The identification proof translates into
a multi-step estimation procedure that makes estimation feasible. Third, I develop a
computational strategy that makes solving the model under different policy scenarios
feasible.

I use the model to simulate the effects of changing the stringency of mandatory
minimum staff-to-child ratios on the wages of lead teachers and childcare workers and
the distribution of cognitive skills of children. I find that more stringent regulations
increase the wages of lead teachers and childcare workers by up to 3% for childcare
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workers and up to 2.5% for lead teachers. Moreover, this policy increases skills at
most percentiles of the skill distribution, but decreases skills at the bottom of the
skill distribution of children born to single-parent families. The overall effects in the
distribution of skills hide very large heterogeneity. For instance, the 1% of children
born to Single Mother families who gain the most from more stringent regulations
increase their skills by 39% of a standard deviation, whereas the bottom 1% of children
born to single mothers who lose the most see their skills decrease by 47% of a standard
deviation. Increasing stringency of regulations induces the most skill redistribution
from poor children to other poor children. Children who experience the largest skill
gains are poor children born to families with little relative care available and lower
assets, whereas children who experience the highest skill losses are poor children born
to families with more hours of relative care available and higher assets.

The model in this paper is not designed to make normative statements about the
skill distribution (i.e., what the skill distribution should be). This could be seen as
a potential limitation of this paper, but it is a deliberate choice. This is because the
only reason why the level of investment chosen by parents could be different from
the social optimum is due to borrowing constraints.2 However, the model doesn’t
allow for externalities, which are another potentially important reason for parental
investment being socially sub-optimal. Potentially important externalities associated
to skills are crime and innovation. For instance, Cunha, Heckman and Schennach
(2010) show that low cognitive and non-cognitive skills are associated to crime, whereas
Bell, Chetty, Jaravel, Petkova and Van Reenen (2019) show that cognitive skills are
associated with innovation and becoming an inventor. Because of this, including all the
sources of underinvestment that would make the model a suitable normative theory of
the skill distribution, while retaining all the elements that make it a suitable positive
theory of the skill distribution, is likely not to be tractable. In fact, including other
sources of missing markets or the externalities discussed above involves modelling the
continuation problem of the child when she becomes an adult, something outside the
scope of this paper. Still, the model is well suited to analyze policies given a policy
target for the skill distribution at kindergarten entry.

I make several contributions in this paper. First, I contribute a quantitative equilib-
rium model of the US childcare market that is point-identified and computationally
tractable. The model is designed to predict for each state in the US the effect of child-
care market policies on family decisions (such as childcare decisions and labor supply
decisions), the skill distribution of children, the wages of teachers, the distribution of
quality of childcare demanded at each age and the cost of childcare. Second, I use this
model to study the effects of an important childcare market regulation, mandatory
minimum staff-to-child ratios, on the distribution of children’s skills. In doing so, I
uncover that this regulation has very heterogeneous impacts on the skills of children,

2Borrowing constraints are not the only possible source of market incompleteness in models of early
childhood investment. For instance, parents’ inability to borrow against their child’s future income
or their inability to write investment contracts with their child are other common sources of market
incompleteness. See Daruich (2018) for a more exhaustive explanation on the problem of missing markets
in models with investment in children.
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and I show that most of the skill redistribution happens between two types of poor
children. Children that gain the most are on average poor children born to families
with lower substitution possibilities (less care provided by relatives available and less
assets), whereas children that lose the most are on average born to poor families with
more substitution possibilities (more care provided by relatives available and more
assets). Third, I prove that the average quality of different childcare arrangements
is identified, even when the quality of different childcare arrangements is measured
using different survey instruments. This is key when trying to predict the effect of
childcare market policies that reallocate childcare across different types of childcare
arrangements on the skill distribution of children.

2 Related Literature

This paper relates to four strands of literature. First, the important seminal literature
that shows that early childhood interventions are a very powerful tool to improve
economic mobility and individual outcomes. In this literature, the efficacy of early
childhood investment in producing skills and improving adult outcomes is established
in two ways. The first way is to study directly the effects of early childhood programs3.
The second way is to estimate the deep parameters of the production function of
skills and their relation to adult outcomes4. Some recent papers in this latter category
dissagregate investment in children to take into account the quality and quantity of
different childcare arrangements (see Griffen (2019); Chaparro, Sojourner and Wiswall
(2020); McMurry (2021)). I adopt this approach and contribute to it by showing that
the relative qualities of different types of childcare arrangements are identified even if
different survey instruments are used to measure their qualities. That is, the quality of
different childcare arrangements can be compared even if they are not measured in the
same units.

Second, many papers study the effects of different policies from the one that I study
on children’s skill development. Examples of such policies are transfer programs, such
as the EITC , parent interventions , and the introduction, expansion or universalization
of early childhood education programs .5

Third, this paper relates the most to a flourishing literature that uses equilibrium

3See for example Campbell, Conti, Heckman, Moon, Pinto, Pungello and Pan (2014); Elango, García,
Heckman and Hojman (2015); Heckman, Garcia, Leaf and Prados (2017); García, Heckman and Ronda
(2021)

4See Todd and Wolpin (2003); Cunha, Heckman, Lochner and Masterov (2006); Cunha and Heckman
(2007); Todd and Wolpin (2007); Cunha and Heckman (2008); Cunha, Heckman and Schennach (2010);
Agostinelli and Wiswall (2016a,b); Attanasio, Meghir and Nix (2020); Attanasio, Cattan, Fitzsimons,
Meghir and Rubio-Codina (2020); Attanasio, Bernal, Giannola and Nores (2020)

5For transfer programs see Bernal and Keane (2010, 2011); Dahl and Lochner (2012); Mullins (2022),
for parent interventions see Sylvia, Warrinnier, Luo, Yue, Attanasio, Medina and Rozelle (2021); Gertler,
Heckman, Pinto, Chang, Grantham-McGregor, Vermeersch, Walker and Wright (2021); Gomez, Bernal
and Baker-Henningham (2022), and for the introduction, expansion, or universalization of early child-
hood programs see Heckman, Garcia, Leaf and Prados (2017); Daruich (2018); Chaparro, Sojourner and
Wiswall (2020); Cascio (2023)
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models of the childcare market for policy analysis. This paper contributes to this
literature by combining a detailed model of the childcare sector with center-based
and home-based providers, in which the cost of providing quality is endogenous to
the labor market for teachers and the effects on the skills of children can be analyzed
by taking into account the reallocation of care across childcare arrangements and
the quality and availability of those childcare arrangements. In addition, this model
adds heterogeneity to the quality of parental and relative care, endogenous asset
accumulation, and accounts for the way the mandatory minimum staff-to-child ratio
enters the quality-production process in paid care providers. Within this literature,
Moschini (2023) analyzes the impact of childcare subsidies on children’s skills in an
OLG model with endogenous family formation in a model in which families buy a
childcare good of homogeneous quality and the childcare price is a constant fraction
of wages. Berlinski, Ferreyra, Flabbi and Martin (2023) look at the impact of various
policies on the skills of children in a model in which there is imperfect competition in
the childcare market. In their model, the cost of providing a given level of quality for a
given provider is exogenous and does not depend on the price of inputs of childcare
production. Borowsky, Brown, Davis, Gibbs, Herbst, Sojourner, Tekin and Wiswall
(2022) examine the counterfactual impacts of adopting an important childcare market
proposal. In order to do so, they build a model that endogenizes the cost of providing
childcare via the labor market for teachers (so that increases in demand for childcare
can increase the unit cost of childcare by raising teachers’ wages). Relative to their
paper, I include skill accumulation. Moreover, relative to both Berlinski, Ferreyra,
Flabbi and Martin (2020) and Borowsky, Brown, Davis, Gibbs, Herbst, Sojourner, Tekin
and Wiswall (2022) I add heterogeneity to the quality of relative and parental care, asset
accumulation, and I model explicitly how mandatory minimum staff-to-child ratios
distort the problem of paid childcare providers6.

Fourth, this paper also relates to the empirical literature on the effects of childcare
market regulations, which use a reduced-form approach to identify the effects of
childcare regulations on the provision of quantity and quality of childcare7. To the best
of my knowledge, this paper is the first to study the effect of childcare regulations on
the distribution of children’s skills, and in estimating a structural model of childcare
regulations.

3 Model

3.1 Families

Families are unitary households, and of two types, single-mother (SM) and two-parent
(TP) households. Families are modeled for 3 periods, that is, when the child is 9 months,

6Another equilibrium model of the childcare market that deserves a special mention is Bodéré (2023),
who models dynamic imperfect competition in a local childcare market.

7See Chipty (1995); Chipty and Witte (1997); Blau (2003); Currie and Hotz (2004); Blau (2007); Hotz
and Xiao (2011)
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2 years old and 4 years old. I choose to model those periods in order to match the data
from ECLS-B (more on that dataset later).

3.1.1 Choices

In each period, Two-Parent families choose how much to consume c, and how much to
save in a one-period risk-free asset at+1.

Two-parent families also make decisions about how parents spend their time: How
much leisure the mother (m) and the father (f) enjoy (lmt , lft), how much time each of
them spends with their child (τmt ,τft), how much each of them work (nmt ,nft)

Importantly, Two-Parent families make decisions about non-parental childcare
arrangements of their child: How much time the child spends with relatives (τrt),
whether to use Center-Based paid care (Dt = CB), Home-Based care (Dt =HB), or no
paid care at all (Dt = HB), how much time the child spends in paid care τpt , and the
quality of this paid care qpt .

Single mothers are similar but they can only choose father-specific variables (the
ones with a superscript f) to be 0.

3.1.2 Preferences

Single-Mother households at t = 1,2,3 derive utility from consumption (ct), leisure
of the mother (lmt ), time of the mother with her child (τmt ), and the skills of the child
according to:

logct+ δml log lmt + δmτ logτmt + δθ,t logθt .

Two-parent households at t= 1,2,3 derive utility from consumption (ct)8, leisure of
the mother (lmt ), leisure of the father (lft), time of the mother with her child (τmt ), time of
the father with the child (τft), and skills of the child θt according to:

logct+ δml log lmt + δfl log lft+ δ
m
τ logτmt + δfτ logτft+ δθ,t logθt ,

with δθ,1 = 0. Note that δθ,1 = 0 is a normalization, in the sense that in this model θ1 is
given and I have no data on pre-natal investment behavior that could be informative
about δθ,1.

The continuation utility at period 4 is given by:

δa loga4+ δθ logθ4 .

Note that I impose common parameters to be the same across family types. In other
words, I am imposing that δml ,δ

m
τ , {δθ,t+1}

3
t=1,δa to take the same numerical value for

Two-Parent families and Single-Mother Households

8Note that I am not dividing c by an equivalence scale to capture economies of scale. This is because
families do not change size in the model and the equivalence scale would appear as an additive constant
in utility that does not affect behaviour.
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3.1.3 Time use constraints

As total time use for each family member cannot exceed total available time. The time
use constraint for parent j is:

lj+ τj+nj = T
j , (TCj)

for j=m,f, where nj is time spent working on the labor market for parent j.
This time use constraint means that parents have to split their time between working,

spending time with their child, and leisure.
The time-use constraint for the mother (m) holds for both two-parent (TP) and

single-mother (SM) households.
Moreover, the child has to be supervised at every point in time:

τm+ τf+ τr+ τp = T , (SC)

where τr and τp denote relative and professional care respectively.
For single parent-households, τf is equal to 0. That is, in families with a single

mother the supervision constraint for the child reduces to:

τm+ τr+ τp = T ,

3.1.4 Supply of relative care

Relative care is free but limited to T r, that is:

τr ∈ [0,T
r
] . (RCC)

where T r is heterogeneous across families.

3.1.5 Production of cognitive skills

The production function for skills follows closely Chaparro, Sojourner and Wiswall
(2020) and McMurry (2021) . Child skills are produced according to:

logθt+1 = logAt+γθ,t logθt+γm,t
τmt
T

logqm+

γf,t
τft
T

logqf+γp,t
τp

T
logqpt +γr,t

τr

T
logqrt+ηt+1 , (PF Skills)

with ηt+1 iid accross periods and where qm,qf,qrt,q
p
t denote the qualities of maternal,

paternal, relative, and paid care respectively. I assume that the quality of maternal
and paternal care are exogenous and time-invariant. The quality of relative care is
exogenous and time-varying, and its family-specific time-path it’s known to each family.
This assumption captures that the comparative advantage or disadvantage of relatives
at producing cognitive skills with respect to parents can depend on the age of the child.
Importantly, this comparative advantage or disadvantage with respect to parents is
identified (see Appendix J.5). Note that what it is assumed to change with time is the
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relative advantage of relative care at producing skills with respect to parents, given that
the absolute location of parental care is not identified. This assumption does not imply
that parenting skills do not change on average as the child ages, it only allows for the
quality of relative and parental care to change at different rates 9. Finally, quality of
center-based care can be purchased on the market.

For households with a single mother τf = 0, the production function for skills
reduces to:

logθt+1 = logAt+γθ,t logθt+γm,t
τmt
T

logqm+γp,t
τp

T
logqp+γr,t

τr

T
logqrt+ηt+1 .

Again, the parameters that are shared by skill production in Two-Parent and Single-
Parent households are required to take the same numerical value.

3.1.6 Budget constraint

Assets tomorrow plus expenditures in consumption and formal care cannot exceed
total household income:

ct+1{D=HB}DHBt (qp)τp+1{D= CB}DCBt (qp)τp+at+1 =w
fnft+w

mnmt +at(1+r) . (BC)

whereD is a categorical variable that takes valuesH,C,N corresponding to Home-Based
Care (HB) , Center-Based Care (CB) and No Professional Care (N). For single-parent
households, the same budget constraint applies with nft = 0.

3.1.7 Borrowing constraint

I assume that assets have to exceed a, which is a parameter:

at+1 ⩾ a . (AC)

In other words, there are constraints to borrowing, which are important because
they could be a source of underinvestment in children cognitive skills, specially in
lower income families.

3.1.8 Fixed cost of choosing paid care

Families are ex-post heterogeneous in their fixed costs of choosing Home-Based and
Center-Based care (oCBt ,o

HB
t ). The cost oDt is independent of oD ′

t , and oDt ′ ,o
D ′
t ′ for t , t ′

and D ,D ′, D,D ′ = CB,HB, and independent across families. The random utility cost
oPt is assumed to be exponentially distributed with parameter λDt .

These exponential utility costs play many roles. First, they help to match the choice
probabilities of not using paid care, using center-based care, and home-based care at
each age. Second, they imply that some families at a given age do not find optimal using

9In fact, the assumption in this paper is slightly more general, because the relative advantage of
relatives versus parents is allowed to change across families according to observables.
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paid care, which helps with the identification of the distribution of the relative care
endowment (see Appendix H). Third, since they are a fixed cost, they help rationalize
why most families that use paid care do not use it for just a few hours per week.

3.2 Summing-up family heterogeneity

At t = 1, families within each location are ex-ante heterogeneous in their initial level
of assets a1, the initial cognitive skills of their child θ1, the wages of the mother and
the father wm,wf, quantity of relative care they can use T r, and the quality of maternal,
paternal and relative care qf,qm, {qrt}3t=1. For each t, families are ex-post heterogeneous
in their fixed-costs of using each type of care (oCBt ,o

HB
t ).

It will be useful later to separate the ex-ante heterogeneity of households into
time-invariant heterogeneity (H) and assets at, that is:

H= (wm,wf,qm,qf, {qrt}
3
t=1,T

r
) .

3.3 Recursive formulation

Here I present the problem of the Two-Parent Household in recursive form. The
problem of Single-Mother families is similar and is therefore omitted. Let the vector of
continuous choices at age t be given by Yt, that is:

Yt = (ct,n
m
t ,n

f
t, l
m
t , l

f
t,τ

m
t ,τ

f
t,τ

r
t,τ

p
t ,q

p
t ) .

The problem of the Two-Parent Family can be summarized by the following func-
tional equation:

VTPt (at,H,θt,o
CB
t ,o

HB
t ) = max

Yt,D∈{CB,HB,N}
logc+ δml log lm+ δfl log lf+ δmτ logτm+ δfτ logτf+ δθ,t logθt

−oCBt 1{D= CB}−oHBt 1{D=HB}+βEVTPt+1(at+1,H,θt+1,o
CB
t+1,o

HB
t+1)

s.t BC, TCj j=m,f , SC, PF Skills , AC ,

for t= 1,2

For t= 3 we have a similar functional equation with

EVTP4 (a4,H,θ4,o
CB
4 ,o

HB
4 ) = δa loga4+ δθ,4E3 logθ4 .

In Appendix B I prove that the value functions are log-additive in skills, which
simplifies further the recursive formulation. This result also implies that the policy
functions do not depend on the child’s skills, which simplifies the computational
solution of the individual problem.

Moreover, in order to find the probability distribution of optimal household choices,
it is enough to calculate the choice probabilities over discrete choices PFTt (Dt =D|at,H)

for FT = TP,SM and D=N,CB,HB and the choice-specific policy functions gFT,Dω (at,H)

for
ω ∈Ω= {c,a ′,nm,nf, lm, lf,τm,τf,τr,τp,qp} .
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In other words, instead of working with VTPt (at,H,θt,o
CB
t ,o

HB
t ) and the correspond-

ing policy functions, we can work with the choice probabilities PFT (Dt =D|at,H) the
choice-specific value functions ṼFT,Dt (at,H) and their corresponding policy functions.

More details on this on Appendix C

3.4 Formal childcare providers

Formal childcare providers can be of two types: Center-based providers (CB) or Home-
Based providers (HB). The market for formal childcare has free entry and is perfectly
competitive. More precisely, upon entering the market, a childcare provider of type P
offering quality q can sell each hour of childcare at the competitively determined price
PD(q), where D = CB,HB. Formal childcare providers produce quality of childcare
per hour q combining efficiency units of the lead teacher per number of children in
the classroom during that hour Ê

k and the number of caregivers in the classroom per
number of children during that hour Ĉ

k according to:

q= Fjt(Ê, Ĉ,k) =A
j
t

(
Ê

k

)αjE,t(
Ĉ

k

)1−αjE,t
.

Note that I am allowing the parameters of the production function to change with
the age of the children that are being cared for, and also note that different types of
formal childcare are allowed to operate different technologies.

This technology captures that the quality of formal childcare is produced by combin-
ing the talent of the lead teacher (who plans curriculum, communicates with parents,
designs play areas and reacts to specific needs of children) with the number of care-
givers, which includes the lead teacher herself, but also other adults in the classroom
like assistant teachers and childcare workers.

Childcare providers hire efficiency units of the lead teacher E and caregiving time C
in a competitive labor market, with factor prices denoted by wE and wC respectively.
Since there is a labor market for each location, wages are location-specific

Moreover, the state government legislates the minimum staff-to-child ratio, which
is age-dependent. Call this legislated ratio Rl,t, where l denotes the location (state) and
t the age.

3.4.1 Factor demands

The factor demands conditional on producing quality q for k children for τ hours are
given in the following lemma.(where h= τk, the total hours of care). E and C denote
the total number of hour-efficiency units of the lead teacher (that is, the efficiency units
of the lead teacher per hour, times her total number of hours), and the total number
of hours of caregiving (the number of caregivers in the classroom time the number of
hours) This is summarized in the following Lemma:
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Lemma 1 (Factor demands).

Ej(h,q) =


(

α
j
E,t

1−αjE,t

wC

wE

)1−αjE,t
qh

A
j
t

if q > q∗(
q

A
j
t

) 1

α
j
E,t

(
1

Rj,l,t

)1−α
j
E,t

α
j
E,t h if q⩽ q∗

Cj(h,q) =


(
1−αjE,t
α
j
E,t

wE

wC

)αjE,t
qh

A
j
t

if q > q∗

Rlh if q⩽ q∗

where q∗ is given by:

q∗ =ARjl,t

(
α
j
E,t

1−αjE,t

wC

wE

)αjE,t
.

Proof. The result comes out of solving the cost-minimization problem of the paid care
center. Full proof in Appendix A.1

Note that we can write:

Ej(h,q) = Êj(q)h ,

Cj(h,q) = Ĉj(q)h .

3.4.2 Costs

From the factor demands above we can get the cost functions, which are given by the
following lemma.

Lemma 2. Given factor prices wE,wC, the cost function of a childcare provider of type j
operating in location l and serving age t cj,l,t(q,h) is given by:

cj,l,t(q,h) =



wE( α
j
E,t

1−αjE,t

wC

wE

)1−αjE,t
+wC

(
1−αjE,t
α
j
E,t

wE

wC

)αjE,t qh
A if q > q∗j,l,twE ( qA) 1

α
j
E,t

(
1

R
j
l

)1−α
j
E,t

α
j
E,t +wCRjl,t

h if q < q∗j,l,t

where q∗j,l,t is defined as in Lemma 1.

Proof. Full proof in Appendix A.1

Again, note from the previous lemma that the cost of offering childcare quality q for
h total child-hours is linear in h, so we can again write, in a slight abuse of notation:

cj,l,t(q,h) = cj,l,t(q)h
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3.4.3 Price of paid care

Lemma 3 (Pricing schedule of paid care). Given factor prices wE,wC, if a positive amount
of childcare hours are offered in equilibrium in the market for childcare of type j at age t, the
price of childcare has to be given by:

Pj,l,t(q) =


Pq if q > q∗j,l,t[
Pq

1
ρP +κP

]
if q⩽ q∗j,l,t

where

P =

wE( αE
1−αE

wC

wE

)1−αjE
+wC

(
1−αjE
αE

wE

wC

)αE 1
A

P =wE
(
1

Rl

)1−αE
αE

(
1

A

) 1
αE,t

ρP = αE

κP =w
CRl

q∗l =AtRl

(
αE

1−αE

wC

wE

)αE
Proof. Comes directly out of the zero profit condition for firms and the expression for
costs from before. Full proof in Appendix A.1

From the previous expression for the equilibrium price schedule we can see that
two things happen upon an increase in the stringency of staff-to-child ratios in partial
equilibrium (with factor prices constant). First, an increase in the mandatory minimum
staff-to-child ratio increases the price level for qualities for which the minimum staff-to-
child is binding (due to an increase in κP). Second, higher minimum staff-to-child ratios
distort lower qualities more than higher qualities, which implies that the price schedule
flattens below q∗, that is, in the region in which the staff-to-child ratio binds. This can
be seen by looking at P and seeing that it is a decreasing function of Rl. An increase in
the price level is likely to push some families out of the market. The flattening of the
price schedule is likely to induce families that buy qualities for which the staff-to-child
ratio is binding to increase their demand for quality (because the savings from buying
lower quality are now lower). Figure 1 plots the price schedule, for a particular age and
a particular type of care, before and after an increase in the staff-to-child ratio Rl, but
keeping factor prices wE,wC constant.

Lemma 3 and Figure 1 capture the direct effect of regulations, that is, keeping factor
prices (the wage of childcare workers and the lead-teacher premium) constant.

While the effects of changing the staff-to-child ratio on the price schedule of quality
given factor prices is known, the effect on the demand for lead-teacher talent and total

13



Figure 1: Price schedule before and after an increase on the stringency of the staff-to-child ratio. Factor
prices are kept constant

caregiver hours is ambiguous. On the one hand, the fact that the price schedule shifts
upward is likely to reduce demand for hours of care, either through the intensive margin
(families reducing their hours), the intensive margin (families exiting the childcare
market altogether), or more likely, a combination of both. On the other hand, the
fact that the price schedule flattens for lower qualities may induce an increase in the
demand for lead teacher talent. Furthermore, if families buying qualities such that
the regulation is binding keep their demand for quality and quantity constant, this
results in an increase in the demand for total caregiving time C (because the stricter
ratio must be met), but in a decrease in the demand for lead teacher talent E (because
quality is kept constant). Hence, the effect on factor prices wE,wC of an increase in
the mandatory minimum staff-to-child ratio is ambiguous. Figure 2 plots the pricing
schedule after the regulation change in two scenarios: One scenario in which as a
consequence of the regulation change factor prices increase, and another one in which
factor prices decrease. As it can be seen in Figure 2 the redistributive effects on the
price of childcare associated to changes in the minimum staff-to child ratio could be
very different depending on the associated change in factor prices.

Without a change in factor prices, families that buy lower qualities (who are more
likely to be poorer) pay a higher price, whereas families that buy high enough qualities
(who are likely to be richer) are not affected. However, if factor prices increase as a
consequence of the change of the regulation, all the families pay a higher price for
childcare.

However, if factor prices go down as a consequence of the change in the regulation,
higher qualities are more affordable than in the benchmark, which can benefit higher
socioeconomic status families.
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Figure 2: Price schedule for a benchmark level of the mandatory minimum staff-to-child ratio for a
benchmark level of regulation and wages (solid line), more stringent regulation but wages as in the
benchmark (dashed) and more stringent regulation and different wages (dash-dotted line). The upper
pannel shows a scenario in which the change on the regulation leads to an increase in wages and the
lower pannel shows a situation in which the change on regulation leads to a decrease in wages.

3.5 Labor supply of teachers and childcare workers

The labor supply of lead teachers and childcare workers is stylized and follows a
constant elasticity of labor supply:

LTl = LT l(w
LT
l )ηLT ,

CCWl = CCWl(w
CCW
l )ηCCW .
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where LTl and CCWl are the number of lead teachers and childcare workers in location
l, wLTl and wCCWl are their average wages, and ηLT and ηCCW are their labor supplies. In
order to map this labor supplies of lead teachers and childcare workers to factor supplies
of efficiency units E and number caregivers C, I make the following assumptions:

First, I assume that for each hour a lead teacher works, she is paid for one hour of
caregiving and her efficiency units E. Hence, the hourly wage of a lead teacher with
efficiency units E is given by:

wLT (E) =wEE+wC ,

whereas childcare workers are only compensated for the caregiving time that theyoffer,
so their wages wCCW are given by the price of hour our of caregiver time:

wCCW =wC .

Second, I assume that the number of hours that lead teachers and childcare workers
work is fixed, so changes in hours of caregiving and efficiency units are only given
by changes on the extensive margin. Third, I assume that teachers do not know their
efficiency units before they join the teaching profession, and I normalize the average
efficiency units to 1. Under this assumption an increase in the wages of lead teachers
does not induce positive or negative selection into the teaching profession, so a change
in the total number of efficiency units supplied is simply the change in the supply of
workers becoming lead teachers, times the hours that lead teachers work (which is
fixed by assumption), times the average efficiency units of lead teachers (which is fixed
and normalized to 1). Under these assumptions, the aggregate supply of paid childcare
production factors becomes:

ES(wE,wC) =HLTLT l(w
E+wC)ηLT , (Supply of E)

CS(wE,wC) =HLTLT l(w
E+wC)ηLT +HCCWCCWl(w

C)ηCCW , (Supply of C)

where HLT and HCCW are the number of hours that lead teachers and childcare
workers work respectively.

Note that the supply of efficiency units depends also on the price of an hour of
caregiving because part of the remuneration of lead teacher corresponds to caregiving.
At the same time, the supply of caregiving hours also depends on the price of efficiency
units because lead teachers provide caregiving apart from their efficiency units.

3.6 Equilibrium

The solution concept of this model is competitive equilibrium. In a competitive equilib-
rium in this economy, center-based and home-based childcare providers enter freely
and maximize profits given factor prices (the lead-teacher premium and the wage
of childcare workers), and given regulations. In particular, their factor demands are
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optimal. Given those prices, families decide optimally childcare arrangements, asset
accumulation, consumption, and labor supply decisions. The childcare decisions of
families include from which type of childcare provider to buy, if any, and how much
quality and quantity to buy from that type of childcare provider. These demands need
to be satisfied by childcare providers in equilibrium (market clearing). Finally, the
demand for lead teachers’s efficiency units and caregiver-hours by childcare providers
equates the supply for those factors at the equilibrium wages.

Now I define more formally the notion of equilibrium for a location l. I omit the
location subscript for economy of notation.

Definition 1 (Equilibrium). Given mandatory minimum staff to child ratios RCB = (RCB1 ,R
CB
2 ,R

CB
3 ),

RHB = (RHB1 ,RHB2 ,RHB3 ) and an initial distribution of family types and asset levels GTP1 (a1,H),
GSM1 (a1,H) an Equilibrium in this environment is given by factor prices (wC,wE), Pric-
ing schedules for paid-care {PCBt (q,τ)}3t=1, {P

HB
t (q,τ)}3t=1, labor demand functions for child-

care centers per hour of care offered {ĈPt (q), Ê
D
t (q)}D=CB,HB, factor supplies CS

,E
S, Value

functions for families {{ṼTP,Dt (at,H), Ṽ
SM,D
t (at,H)}D=N,CB,HB}

3
t=1 policy functions for families

{{{gTP,Dω,t (at,H)}ω∈Ω}D=N,CB,HB}
3
t=1, and {{{gSM,Dω,t (at,H)}ω∈Ω}D=N,CB,HB}

3
t=1, endogenous dis-

tributions of family types at t = 2,3 GTP2 (a2,H), GSM2 (a2,H), GTP3 (a2,H), GSM3 (a2,H), choice
probabilities {PFT,CBt (at,H),P

FT,HB
t (at,H)}

3
t=1 for FT = TP,SM, endogenous measures of fami-

lies over quality of paid care type D at time t {{FTPt ,FSMt }D=CB,HB}
3
t=1 and endogenous measures

of paid care providers {{Pt}D=CB,HB}
3
t=1 (where measures of families and providers map the Borel

sets on R+ B(R+) to R+) such that:

• Given factor prices and regulations (Mandatory minimum staff-to-child ratios) the price
schedule of paid care providers of type P at time t is given by Lemma 3.

• Factor demands {{ĈDt (q), ÊDt (q)}D=CB,HB}
3
t=1 are given by

ÊDt (q) = E
D
t (q,1) ,

ĈDt (q) = C
D
t (q,1) ,

where EDt (q,h) and CDt (q,h) are given by Lemma 1

• C
S
,E

S are consistent with Supply of C and Supply of E given wages, that is:

C
S
= CS(wE,wC) ,

E
S
= ES(wE,wC) .

• ṼFT,D(at,H) solve ṼN and ṼP.

• gFT,Dω,t (at,H) belong to the argmax of ṼN and ṼP respectively.

• Choice probabilities {PFT,CBt (at,H),P
FT,HB
t (at,H)}

3
t=1 are consistent with {ṼFT,Dt }D=N,CB,HB,

that is:

P
FT,D
t (at,H) =P

(
ṼFT.Dt (at,H)−o

D
t ⩾ max{ṼFT.jt (at,H)−o

j
t, Ṽ

FT,N
t (at,H)}

)
,

for D= CB,HB and j ,D
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• GFTt+1(at+1,H) is consistent with the optimality of saving decisions of households, that is:

GFTt+1(at+1,H) =

∫
a,H̃⩽H

( ∑
D=N,CB,HB

P
FT,D(a,H)1(gFT,Da ′,t (a,H)⩽ at+1)

)
dGt(a,H̃) .

• The measure of families with a child of age t demanding qualities q ∈ Q of type D is
consistent with the optimal family decisions:

FFT,Dt (Q) =MFT

∫
at,H

P
FT,D
t (at,H)1(g

FT,D
qp,t (at,H) ∈Q)gFT,Dτp,t (at,H)dGt(at,H) for all Q ∈B(R+) .

• q ∈Q at age t in market D for t= 1,2,3 and for D= CB,HB clears:

FSM,Dt (Q)+FTP,Dt (Q) = PDt (Q) for all Q ∈B(R+) .

• The factor markets clear:

3∑
t=1

∑
D=CB,HB

∫
q
ĈDt (q)dP

D
t (q) = C

S ,

3∑
t=1

∑
D=CB,HB

∫
q
ÊDt (q)dP

D
t (q) = E

S .

4 Computational Tractability

The model described above is an equilibrium model, where given household structure
(Two-Parent vs Singe-Parent households) families are heterogeneous in 7 time invariant
characteristics (4 continuous and 3 discrete10) and there are 2 dynamic states. More-
over, families make 10 continuous choices and 1 discrete one. There is a market for
each type of care (Center-Based and Home-Based), for each age, and for each quality.
Apart from these type-age-quality-specific markets for childcare, there are also 2 factor
markets (Lead teacher efficiency units and caregivers). Hence, solving for the equilib-
rium requires solving for 6 equilibrium pricing schedules PDt (q), each of them infinite
dimensional, and 2 factor prices.

Here I describe the features of the model and numerical techniques that make the
computation of the model tractable.

4.1 Household problem

First, instead of discretizing the time-invariant family characteristics H, I sample
from the joint distribution of initial assets and family characteristics G1(a1,H). High-
dimensional integrals are more precisely calculated using Monte-Carlo techniques
than quadrature techniques for a given budget of computational resources. This is

10The three discrete are relative care at t= 1 and 3 (at t= 2 relative care is a deterministic function of
relative care at t= 1), and the availability of relative care. The support for each of these three variables is
finite but contains many values.
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because relying on simulation automatically zooms in regions of the space of family
characteristics that are more likely, increasing precision.

Despite the fact that the household problem has 2 dynamic continuous states, I
show that value functions are log-additive in cognitive skills (see Appendix B), which
also implies that policy functions do not depend on skills.

A priori, solving for household choices seems computationally very burdensome
for a particular household structure FT = TP,SM, a vector of family characteristics H
and assets at, given that households in this model make 10 continuous choices and 1
discrete choice. In order to alleviate that problem, I do the following:

• First, I split the problem of making optimal choices in three discrete-choice-
conditional problems, one for each D=N,CB,HB

• Second, I further split this problem between an asset conditional choice and the
choice of choosing assets optimally.

• This step is where the computational gains come. Given future assets at+1 and
the discrete choice D we still have 9 continuous choices to make. I show that
choosing those optimally amounts to essentially 11 a sequence of one-dimensional
root-finding problems, which is more tractable than a 9-dimensional search.

On top of this, the presence of the exponential utility costs allows me to:

• Find the expected future value function in closed form given the discrete-choice-
conditional value functions

• Find choice probabilities in closed form for the discrete choice D = N,CB,HB

given the choice-conditional value functions

• Use fewer grid points for future assets, given that the future expected value
function is differentiable thanks to the exponential costs

4.2 Equilibrium

Looking for an equilibrium of this model seems intractable at first, even given what we
know now about the computation of households’ optimal choices. This is because we
still need to find 6 pricing functions (that is, 6 infinite dimensional objects), and 2 scalar
prices. Lemma 3 allows as to reduce this for a search for 2 scalar prices (because given
those Lemma 3 allows us to calculate the pricing functions in closed form).

Moreover, once we sample at,H, the fact that the choice probabilities are in closed
form given the value functions allows me to simulate fewer individuals (essentially,
I can compute the probability distribution of choices exactly without relying in mon-
tecarlo simulation for each realization of a1,H, see Appendix D). This allows to check
for market clearing in the factor markets more efficiently. Check Appendix E for more
details on this.See Appendix C for more details.

11The word "essentially" here indicates that for some searches in that sequence, we actually have a
one-dimensional root-finding problem nested in another one-dimensional root-finding problem
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5 Data

This paper uses data from a variety of sources. In particular, I combine information from
the individual-level surveys Early Childhood Longitudinal Study, Birth Cohort (ECLS-
B) and the Survey of Consumer Finances (SCF), with aggregate state-level data on
mandatory minimum staff-to-child ratios and wages of teachers and childcare workers.

5.1 ECLS-B

The main dataset is the ECLS-B. The ECLS-B is a nationally representative survey of
children born in the United States in 2001, and contains information on roughly 10700
children. The ECLS-B contains detailed information on the childcare arrangements and
the skills of the children sampled, and socioeconomic information of the families that
those children are born into.

5.2 SCF

Because the ECLS-B contains only limited information on assets, I use information from
the 2001 wave of the SCF to impute wealth for each ECLS-B family in my analysis at
each point in time.

5.3 Wages of lead teachers and childcare workers

I take wages of lead teachers (Occupational code 25-2011) and childcare workers (Occu-
pational Code 39-9011) for the years 2001-2006 from the BLS Occupational Employment
and Wage Statistics12 .

5.4 Staff-to-child ratios

I use data on mandatory minimum staff-to-child ratios for center-based providers for
the years 2002 and 2005, and for home-based care providers for years 2001 and 2007.
The data for the years 2001 and 2002 was compiled by Sheri Fischer for a project at
Wheelock College in Boston. The data for years 2005 and 2007 was also compiled by
Sheri Fischer for the 2005 Childcare Licensing Study respectively and the 2007 Childcare
Licensing Study respectively.

In the data, regulations are more complex than in the model. For instance, while the
model periods correspond to the ages of the child 9 months to 2 years old, 2 years old-
4 years old, and 4 years old to 5 years old, mandatory minimum staff-to-child ratios
can change within those periods. For example, in 2005 in Alabama, the ratio for centers
changes from 4 children per adult before 18 months, to 6 children per adult at 18 months.
Moreover, because Home-Based care providers usually mix children of different ages
in the same room, mandatory minimum ratios for Home-Based care providers usually
depend on the age distribution of children in the room. I transform the raw data on

12See https://www.bls.gov/oes/tables.htm
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mandatory minimum staff-to-child ratios in a way that I can use in estimation and
when solving the model in two ways. First, mandatory minimum staff-to-child ratios
change for some states between ages 9 months to 2 years old and 2 years old to 4
years old (corresponding to model periods 1 and 2), but not between 4 and 5 years old
(corresponding to model period 3). Hence, for those model periods in which the ratios
change I consider the ratio that applies at that model period to be the ratio that applies
at the midpoint of the period. That is, when estimating parameters and when solving
the model, the staff-to-child ratio at t= 1 corresponds to the staff-to-child ratio at age
18 months in the data. Moreover, in the data staff-to-child ratios for home-based care
providers can depend on the mix of ages of children in the room and the number of
providers, but in the model I assume that neither home-based care providers nor center-
based care providers cannot mix ages, and the ratio does not change with the number
of providers. The way I construct age-specific staff-to-child ratios for home-based care
providers at age t in state l is by reading the regulation of state l and finding out what
would be the ratio that applies if home-based care providers in state l were to only
provide care to age t. If small home-based care providers (1 staff member in the room)
and large home-based care providers (2 or more) I pick the staff-to-child ratio to be
the most lenient13 (the lowest staff-to-child ratio) For the sake of illustration, consider
the case of Missouri in 2007. According to the childcare licensing study, Missouri had
different licensing requirements in 2007 for small home-based providers (with one adult
in the room) and for large home-based providers (with 2 or more adults in the room).
A Small Home in Missouri would comply with the mandatory minimum staff-to-child
ratio if the one adult in the classroom was caring for at most:

1. 10 children, if 2 are younger than 2 years.

2. OR 6 children, if 3 are younger than 2 years.

3. OR 4 children, if all are younger than 2 years.

Hence, if a small home-based provider were to provide care in Missouri to only children
aged 18 months old, the mandatory minimum ratio that would apply to that home-
based care provider would be 1:4. For children aged 3 years old, it would be 1:10. If
we look now at Large Home-Based care providers, the 2007 childcare licensing study
tells us that 20 children could be cared for by 2 providers without specifying the age of
the children, so the ratio that applies at all ages for large home-based care providers is
2:20. Hence, the staff-to-child ratio for home-based care providers in Missouri at age 18
months that I use to estimate and solve the model is 1:10

5.5 Other aggregate data

In order to account for state-level differences in prices, I construct a state-level Price
Index for each state in the years 2001-2008 by taking the the State-Level Regional Price

13Note that if I were to allow in the model for home-based care providers of different sizes facing
different regulations, only the size corresponding to the most lenient regulation would survive in
equilibrium, given the constant return to scale and free entry assumptions.
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Parities of the BEA, and assuming that inflation was the same in each state in the period
2001-2008 and equal to the US overall inflation, which I take from FRED.

I also use state-level fertility data, which I use as an instrument in the estimation
of the labor supply elasticity of lead teachers and childcare workers. I get the data on
Fertility for each state in the US for the years 1999-2003 from the CDC 14

6 Model Identification

One of the nice features of the model is that we can prove that it is identified given the
data that we have available. Because the model has many ingredients and identifica-
tion proofs for each of these ingredients are different, I relegate to the Appendix the
formal identification discussions. Hence, I will only present here a high-level heuristic
identification discussion for each group of model parameters and distributions, but the
interested reader can refer to the Appendix for more details.

The objects to be identified can be split into 4 different groups, with some sub-
groups:

1. Parameters of the measurement system for non-parental, maternal, and paternal
quality.

2. Household-side Objects

• Production Function of child skills

• Initial distribution of households over their time-invariant characteristics H
and their initial level of assets a1

• Preference parameters

– Distribution of fixed utility costs of using Home-Based and Center-Based
providers

– Rest of the preference parameters

3. Technology of quality production for Home-Based and Center-Based providers

4. Labor supply of Lead Teachers and Childcare Workers

6.1 Parameters of the measurement system for non-parental, maternal,
and paternal quality.

Parental and maternal care quality are latent in nature, and so they are not readily
available from ECLS-B data. Because of that, the mapping between latent qualities and
data objects needs to be identified. I assume that the relationship between latent care

14https://www.cdc.gov/nchs/data/statab/natfinal2003.annvol1_08.pdf
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quality j (where j refers to maternal, paternal, relative or paid care) and its s-th noisy
measure is given by a linear measurement system15:

˜logq
j,s

= µj,s+αj,s logqj+ ϵj,s ,

for j=m,f,r,p and s= 1, . . . ,Ns ,

where ϵj,s are independent of logqo for o = m,f, ϵj,s ′ for s , s ′ and ϵj ′,p for j , j all p
(that is, measurement errors are independent of all latent qualities and all the other
measurement errors). The noisy measures of parental care are constructed from survey
responses to questions about parental attitudes and behaviors. For the mother, scores
capturing the quality of mother-child interactions constructed from direct observations
are also available, and hence I incorporate them when measuring maternal quality.
The two measures of maternal and paternal quality constructed from the same set
of questions are normalized by subtracting the mean and dividing by the standard
deviation of the raw measure for maternal care. The measure of non-parental quality
that I use is the Arnett score. Let’s describe first the identification of the measurement
systems of paternal and maternal quality. A subset of questions asked by the ECLS-B
to mothers and fathers coincides. If the mapping from responses to those questions to
latent parental quality is gender-independent, it makes sense to assume that paternal
and maternal care qualities are measured in the same units. More formally, letting
˜logq

m,1
,˜logq

f,1
be the measures of maternal and paternal quality constructed from

applying the same transformations to the same questions, we have that:

˜logq
j,1

= µpar,1+αpar,1 logqj+ ϵj,1 for j=m,f ,

where note that µpar,1 and αpar,1 do not depend on j, that is, they are the same for
mothers and fathers (hence the choice of superindex par for parental). Because parental
quality is latent and has no natural scale, we can normalize:

µpar,1 = 0 ,

αpar,1 = 1 .

At this point it is important to note one thing. First, we should only normalize one
measure for all types of care. To see why, suppose that we normalize µpar,1 = µARNETT =
0 where µANRETT stands for the shifter in the measurement system for the standardized

Arnett score. Because both the standardized ˜logq
m,1

and the standardized Arnett score
both have mean zero by construction, imposing

µpar,1 = µARNETT = 0

amounts to imposing

E[logqm] = αANETTt logqrt ,

15Despite the fact that investment is itself a combination of latent qualities, dedicated measures for
the quality of each childcare arrangement are available. For identification results on linear factor models
where measures load on multiple latent factors see Williams (2020)
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which implies taking a stand on the location of relative care quality with respect to
maternal quality that is not necessary for identification. Doing that may bias the
predicted effect on children’s skills of policies that reallocate care from relatives to
parents or vice-versa. Going back to the identification of measurement parameters, and
following arguments similar to those in Cunha, Heckman and Schennach (2010), αj,2

can be identified from:

αj,2 =
cov(˜logq

j,2
,Z)

cov(˜logq
j,1
,Z)

,

Where Z is an instrument that is uncorrelated with measurement error (in estimation, I
use the predicted Arnett score for relative care).

Given αj,2, µj,2 is identified from:

µj,2 =E[˜logq
j,2
] −αj,2E[˜logq

j,1
] .

Now, let

logqpar =

(
logqm

logqf

)
,

˜logq
par,1

=

˜logq
m,1

˜logq
f,1

 ,

and

˜logq
par,2

=

˜logq
m,1

−µm,2

αm,2

˜logq
f,1

−µf,2

αf,2

 .

By Theorem 1 in Cunha, Heckman and Schennach (2010), the distribution of logqpar is
identified. Moreover, since the measurement errors are fully independent, the distri-
bution of the measurement error is identified by a standard deconvolution argument.
See sub-appendix J.3 for more formal identification results on the measurement system,
details on the construction of parental quality measures, details on the estimation of
the measurement system for parental quality, and estimation results.

It remains to be argued that the Arnett score measurement system parameters are
identified. In principle, this claim may seem surprising, because the usual latent factor
models tell us that with only one measure we cannot identify the parameters of a
measurement system. However, the structure of the model imposes further restrictions
that can be exploited to identify αARNETTt and µARNETTt . In particular, note that combining
the measurement equation for the Arnett score and the production function of quality
of paid providers implies the following:

ARNETTi,t = µ
Arnett
t +αArnettt

(
logAHBt + 1(Di,t = CB)(logACBt − logAHBt )

)
+

αArnettt

(
αE,t log

(
E

k

)
+(1−αE,t) log

(
C

k

))
+ ϵArnettt ,
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where the term (
logAHBt + 1(Di,t = CB)(logACBt − logAHBt )

)
,

is there to allow for center-based and home-based care providers to have different
productivities. From the previous equation it is apparent that if we can construct the
term

αE,t log
(
E

k

)
+(1−αE,t) ,

then αARNETTt is identified from the projection of ARNETTi,t on a constant, a dummy for
the provider being center-based, and the input composite term

αE,t log
(
E

k

)
+(1−αE,t) log

(
C

k

)
.

Because
(
E
k

)
and

(
C
k

)
are data, and αE,t is identified independently of αARNETTt (as we

will see later), then αARNETTt is identified. That is, the factor loading of the Arnett score
αARNETTt is identified from the constant returns to scale Cobb-Douglas assumption in the
production of quality. Note that if the Cobb-Douglas technology of quality production
was not constant returns to scale, the relationship between the Arnett score and the
input composite term would be

ARNETTi,t = µ
Arnett
t +αArnettt

(
logAHBt + 1(Di,t = CB)(logACBt − logAHBt )

)
+

ναArnettt

(
αE,t log

(
E

k

)
+(1−αE,t) log

(
C

k

))
+ ϵArnettt ,

where ν is the returns to scale parameter. In this case, ν and αARNETT wouldn’t be
separately identified. The location parameter µARNETT is identified jointly with the
parameters of the Production Function for skills (more on this later). See sub-appendix
J.1.1 for a more formal identification argument for αARNETT and estimation results.

6.2 Household-side objects

6.2.1 Production Function of skills

Let ̂ARNETT
j

be the value of the Arnett score of type of care j predicted by observables.
Because true quality is assumed to be a deterministic function of observables (family
characteristics in the case of relative care, production inputs in the case of paid care)
̂ARNETT

j
can be written as:

̂ARNETT
j
=

logqj−µARNETT

αARNETT
,

where the dependence on t is omitted for economy of notation. Substituting the
relationship between ̂ARNETT and true quality into the production function for child
skills we get:
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logθt+1 = logAt+γθ,t logθt+γm,t
τmt
T

logqm+γjf,t
τft
T

logqf+
γp,t

αARNETTt

τp

T
̂ARNETT

p

t+

γr,t

αARNETTt

τr

T
̂ARNETT

r

t−
γp,t

αARNETTt

τ
p
t

T
µARNETTt −

γr,t

αARNETTt

τr

T
µARNETTt +ηt+1 .

Note that ηt+1 does not affect childcare decisions independently of timing assumptions
about when ηt+1 is realized, because of the log-additivity of skills in the value function.
Hence the only unobservables causing an endogeneity problem when estimating the
previous equation are the measurement errors in maternal and paternal quality. This
source of endogeneity can be tackled by using repeated measures of maternal and pater-
nal care (hence the need for constructing at least two such measures), so identification
is restored. Hence, since αARNETTt is identified, the production function of skills and the
additive shifter of the Arnett score measurement system are identified for t= 2,3.

For t= 1 this argument doesn’t quite work because we have a missing data problem:
At 9 months, ECLS-B did not observe non-parental childcare arrangements, so the
Arnett score is not available for t = 1. This is not only a problem from the point of
view of estimating skill-production function parameters, but also from the point of
view of knowing the distribution of logqr,1. In order to tackle these two issues, I make
two assumptions: Firs, I assume that γr,1 = γp,1. This is a sensible restriction because
relative care and paternal care are both measured by the Arnett score, so they should
be in the same units. Second, I assume that the change in relative care quality between
waves 1 and 2 is constant across individuals, that is:

logqr2 = logqr1+g
q,r
1 .

Under these assumptions, the evolution of skills between t= 1 and t= 2 for children
spending no time in paid care can be written as:

logθ2 = logA1+γθ,t logθ1+γm,1
τm1
T

logqm+γf,1
τf1
T

logqf+

γr,1

αARNETT2

τr1
T

̂ARNETT
r

2−
γr,1

αARNETT2

τr1
T
(µARNETT2 +αARNETT2 g

q,r
1 )+η2 ,

and note that we are using the predicted Arnett score at t= 2, since the one at t= 1 is
not available. Also note that now the term accompanying the fraction of time spent
in relative term is not only µARNETT2 , the extent to which the standardized Arnett score
overstates true quality with respect to parental quality, but also gq,r1 , which is the extent
to which we would overstate relative quality at 1 if we used predicted quality at 2.
It is important to note that we are conditioning in τP = 0. If we didn’t do that and
instead considered the whole population of children, we would have an endogeneity
problem coming from the fact that the quality of paid care is not observed at 1. Also,
the fact that we are conditioning on τP = 0 does not create selection bias, because the
only unobservables that appear when estimating the previous equation are η2 and the
measurement errors in parental quality. Since the only source of endogeneity is again
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measurement error in maternal and paternal quality, and we have repeated measures of
maternal and paternal quality, the previous equation is identified. Hence, production
function parameters at t= 1 and the growth rate of relative care quality between periods
1 and 2 are identified. See sub-appendix J.5 for more formal identification arguments,
details on the estimation, and estimation results.

6.2.2 Initial Distribution of household characteristics and assets

Suppose that we want to predict the effects of a policy that is likely to increase the price
of childcare for some levels of quality on the behavior of households and the skills of
their children. To what extent households are able to substitute paid childcare with
informal childcare depends on the availability of relative care, which in the model is
given by the household-specific endowment T r. Moreover, the extent to which the
skills of the children of families that use more relative care as a consequence of this
policy change, depends on the quality of the relative care available to these families
at each age of the child, which in the model is given by {logqrt}3t=1. It is clear then
why, in order to predict the distributional effect of childcare market policies in general,
and changes to mandatory minimum staff-to-child ratios in particular, it is important
to identify the distribution of households over initial levels of wealth, time-invariant
family characteristics, and initial skills Ga,H,θ(a1,H,θ). I will argue why this distribution
is non-parametrically identified under the assumptions of the model for Two-Parent
families. The argument for Single Mothers is similar. First, note that the time vector of
time-invariant family characteristics contains the wages of the mother, the wages of the
father, the quality of maternal care, the quality of paternal care, the path of quality of
relative care, and the endowment of relative care, that is:

H= (wm,wf,qm,qf, {qrt}
3
t=1,T

r
) .

The wages of the father and the mother are observed for fathers and mothers that work
in some wave, and imputed for those that never work in the sample period. Hence,
they can be treated as observable.

Quality of relative care is assumed to be a deterministic function of observables for
t= 2,3. That is:

logqrt = X
′
q,rβ

q,r
t .

This implies the following relationship between the Arnett score and observables in
Xq,r:

ARNETT ri,t = µ
ARNETT
t +αARNETTt X ′

q,rβ
q,r
t + ϵARNETTi,t .

Even though the households for which the Arnett score of relative care is observed
are endogenously selected, identifying the constant and the slope of the projection of
the Arnett score on Xq,r because the only unobservable present is measurement error
in the Arnett score. Hence, the predicted Arnett score ̂ARNETT

r

i,t is observed for all
households, which means that logqrt for t= 2,3 is observed for all households, since the
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measurement parameters of the Arnett score are identified. See sub-appendix J.2 for a
more formal identification argument and for estimates of αtβq,rt . Moreover, since the
growth of relative care quality between periods 1 and 2 is identified, we can construct
logqr1 from logqr2. This establishes that {logqrt}3t=1 can be treated as observed.

The endowment of relative care is assumed to be a deterministic function of family
characteristics, that is:

T
r
= T

r
(ZT,r)< T ,

where ZT,r is a vector of discrete-valued family covariates. Under the assumption that
logqm, logqf can be made arbitrarily small regardless of other family characteristics,
the function T r(ZT,r) is non-parametrically identified. Intuitively, if parents care about
their children, for every possible value of ZT,r we can always find families that draw
utility costs of using paid care high enough and that are bad enough parents such
that they want to exhaust relative care. Hence T r(ZT,r) is identified from the maximum
amount of relative care used by families with covariates ZT,r. Appendix H provides
a formal proof of this result, details on the estimation, and estimation results. Given
that (wm,wf, logqr,T r) can be treated as observable, it suffices to show that the dis-
tribution of (a1, logqm, logqf, logθ1) given (wm,wf, logqr,T r) is identified. First, note
that because assets are observed in the SCF, the distribution of measurement error
in assets is identified from SCF data. Second, the distribution of measurement error
for maternal, paternal quality, and initial skills are identified (see Appendix J for the
identification argument, details on the estimation, and estimation results ). Under
the assumption that measurement error in assets is independent of a1,H and the mea-
surement error in maternal and paternal quality, and measurement error in skills,16,
the distribution of (a1, logqm, logqf, logθ1) given (wm,wf, logqr,T r) is identified from a

standard deconvolution argument (given that (ã1,˜logq
m,1
,˜logq

f,1
) are observed, and

the distribution of (ϵa1 ,ϵ
m,1,ϵf,1) is known). Note that the same arguments can be used

to identify non-parametrically G2,G3.

6.2.3 Preference Parameters

Preference parameters can be divided into parameters of the distribution of the fixed
utility costs of using center-based and home-based care, and the rest of preference
parameters. Let’s start with the rest. These parameters are δml ,δ

f
l ,δ

m
τ ,δ

f
τ, {δθ,t}

4
t=2,δa The

parameters governing the marginal utility of leisure δml ,δ
f
l are identified by the ratio of

the value of consumption to the value of leisure. If the expenditure share of leisure is
larger than the expenditure share of consumption for both mothers and fathers, that
means that they are likely to value leisure more. {δθ,t}4t=2 is identified from observing
how much families pay for paid care, how much of an increase in quality they get with

16The full independence assumption on the measurement error in assets is indeed an assumption, that
is, it doesn’t happen by construction. The imputation procedure relies on projecting net worth on SCF on
observables that are both available in SCF and ECLS-B, and then use the coefficient of that projection to
impute net worth in ECSLS-B. Such a procedure ensures that the measurement error has zero covariance
with the observables used in the imputation, and by extension with the imputed measure of assets, but it
does not ensure full independence.
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respect to their relatives, and how much they consume. If families are willing to pay
a lot for center-based care, consume little, and get only a modest increase in quality
with respect to free care provided by relatives, that means that δθ,t is high. Note that in
the first wave of ECLS-B data on the quality of paid care is not available. I circumvent
this limitation by exploiting that the structure of the model implies that the quality of
paid care bought by a family in an interior solution for relative care from a provider for
which the staff-to-child ratio doesn’t bind is known once the quality of relative care is
known. The quality of relative care in the first wave given that the quality of relative
care in the second wave is known, and the change in relative care quality between the
first and the second wave is constant and identified. δmτ ,δfτ are identified once {δθ,t}

3
t=0

and δml ,δ
f
l are known from observing the time use decisions of fathers and mothers.

For instance, if we know that mothers value leisure and children’s skills a lot, but we
observe mothers that are worse at fostering skill development than the relatives they
have available spending a lot of time with their children, that means that they should
intrinsically value time with their children a lot, which translates into a high τm. Finally,
δa is identified from the following relation:

a4 = δac .

Both assets and consumption are measured with error, and the measure of contem-
poraneous consumption is constructed from the measure of contemporaneous assets.
This creates an endogeneity issue, so a regression of assets in wave 4 on consumption
on wave 3 does not identify δa. Fortunately, consumption at wave 1 can be used as
an instrument to recover δa. See Appendix L for formal identification results. See
Appendix M for details on the estimation procedure and estimation results.

Now let’s turn to the parameters of the distribution of the utility costs of using
center-based and home-based care. Given data on wages, regulations, and technology
parameters for center-based and home-based parameters providers, we can find the
price schedules for quality that families face in the model according to the expressions
given in Lemma 3. Given knowledge of the rest of the preference parameters, we can
find the choice-specific value functions of choosing no paid care, center-based, and
home-based care at age 4 for a household with assets and time-invariant characteristics
given by (a3,H). Because the distribution of utility costs is exponential, the probability
of a household choosing center (home) care is monotonically increasing provided that
that household prefers center (home) care absent the utility costs. Hence, as long as
the group of households that prefer center-based care to no paid care and the group
of households that prefer home-based care to no paid care both have positive masses,
we have that the unconditional choice probabilities are monotonic in the exponential
parameters of the utility cost distributions. Using backward induction we can repeat
this argument for t = 2, and t = 1, which implies that (λCB,t,λHB,t) are identified for
t= 1,2,3. See Appendix L for formal identification results. See Appendix M for details
on the estimation procedure and estimation results.
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6.3 Technology of quality production for Home-Based and Center-
Based providers

For childcare providers for which the staff-to-child ratio is not binding, αE,t can be
identified from the share of income used to remunerate the efficiency units of the lead
teacher in the classroom, that is:

αE,t =
wEEi,t

wCCi,t+wEEi,t
.

The factor prices wE,wC are available from state-level data, Ci,t is the number of care-
givers in the classroom of the child i at age t and Ei,t can be constructed from the wage
of the lead teacher. Because identifying αE,t requires knowing for which providers the
mandatory minimum staff-to-child ratio doesn’t bind, and because of the complexity of
the regulations for home-based care providers, I use only center-based care providers
to estimate αE,t. Moreover, at t = 1 information of the wage of the lead teacher is not
available, so I extrapolate αE,1 from αE,2 and αE,3.

The TFP of childcare providers can be identified from two sources. The first one is
by linearly projecting the Arnett score for centers on the input composite

αE,t log
(
E

k

)
+(1+αE,t) log

(
C

k

)
.

The intercept of this projection combines the efficiency of quality production (log-
TFP) with the extent to which the standardized Arnett score overstates the quality
of relative care when compared to the measures of parental care (which is measured
by the intercept of the measurement system of the Arnett score µARNETTt ). Prices also
contain information of the efficiency of quality production. Intuitively, if the technology
of childcare quality is more efficient, producing the same quality should be cheaper.
This is apparent in the expression for P in 3. The only reason that the expression for
P cannot be used directly is that qP is measured with error and that the measurement
error is multiplicative in qp but additive in P(q) (the price of childcare) 17 However, one
can again (as in the identification of preference parameters) use the fact that the quality
of paid care is known given for a family who is using relative care (but not exhausting
it) and who is buying childcare from a provider for whom the mandatory minimum
staff-to-child ratio doesn’t bind. See Appendices I and K for formal identification
arguments, details on the estimation, and estimation results.

6.4 Labor Supply Lead Teachers and Childcare Workers

In the model, the labor supply of teachers and childcare workers is given by the
following constant elasticity of labor supply specifications:

LTl = LT l(w
LT
l )ηLT ,

17We need the measurement error in P(q) to be additive for the identification argument for δθ,t to go
through.
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CCWl = CCWl(w
CCW
l )ηCCW .

Using the previous two equations for identification and estimation amounts to assum-
ing that there are no state-specific idiosyncratic reasons that affect the Lead Teachers
and Childcare Workers, which can bias the estimates of the labor supply elasticities. We
can allow for those unobservable factors by augmenting the estimation equations to be
given by:

LTl,t = LT l(w
LT
l )ηLT exp(ξLTl,t ) ,

CCWl,t = CCWl(w
CCW
l )ηCCW exp(ξLTl,t ) .

Including these shifters create a familiar simultaneity problem, that prevents us from
identifying the labor supply elasticities just from observing aggregate labor supply
decissions of lead teachers and childcare workers for each state and their wages. How-
ever, we can overcome this problem by using a familiar strategy: We can instrument
wages using some labor demand shifter. The instrument that I use in this paper is 2
year-lagged fertility. The rationale for using this instrument is that, if lagged fertility
predicts labor demand (as it would be the case if more children in a state translate into
a higher demand for childcare in that state) and lead teachers and childcare workers
joint the labor force quickly enough after having children (so that current fertility may
affect labor supply of teachers and childcare workers, but lagged fertility doesn’t),
then 2-periods lagged fertility is a valid instrument. Once we have the elasticities, we
can identify the shifters by ensuring that the overall level of wages of teachers and
childcare workers across states predicted by the model is consistent with the level of
wages observed in the data. Intuitively, if we observe wages, and given knowledge of
the household-side and provider-side parameters, we can predict whether childcare
demand is high or low at those prices by solving the model in partial equilibrium (that
is, feeding in the wages into the model and solving for all the other equilibrium objects).
If the observed wages are low, and demand is high, then that means that lead teachers
and childcare workers are abundant, which translates into a high level for their shifters.
See Appendix N for formal identification arguments, details on the estimation, and
estimation results.

Note that the identification strategy (and the resulting estimation strategy) is robust
to mandatory staff-to-child ratios being endogenous to labor supply shocks18. This is

18This is an important concern because there is evidence, anecdotal at least, that regulators
react to labor supply shocks by relaxing childcare market regulations. See the figure in page 5
of https://thefga.org/research/covid19-highlighted-problems-in-childcare/

and https://eu.desmoinesregister.com/story/news/politics/2022/06/16/

more-kids-per-class-younger-workers-allowed-iowa-child-care-center-law-regulations/

9587915002/
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because identification of preference and technology parameters only depends on labor
supply shocks to the extent that they affect wages of teachers, and those wages are
observed. Moreover, identification of labor supply parameters is robust to regulations
being endogenous to the shock to the extent that lagged fertility is exogenous to the
shocks. Moreover, identification of the labor supply multiplicative shifter does not
depend on the regulation being exogenous to the regulation.

7 Equilibrium effects of Staff-to-child ratios

7.1 Effects on teachers’ earnings

Here compare the factor prices effects of moving each state to the least stringent staff-
to-child ratios, the average staff-to-child ratios, and the most stringent staff-to-child
ratios. I define the least (most) stringent staff-to-child ratio at age t and for type of care j
as the minimum (maximum) staff-to-child ratio across all states at age t for type of care
j. The average regulation at age t for type of care j is given by the average staff-to-child
ratio at age t for type of care j across states.

The following table shows the least stringent, average, and most stringent regula-
tions across states in my sample for each type of care and for each age:

Table 1: Least, average, and most stringent regulations across ages and types of care

18 months old 3 years old 4 years old
Least stringent, Centers 9 15 20
Least stringent, Homes 10 15 18
Average, Centers 5.28 10.7 12.41
Average, Homes 4.60 6.90 7.07
Most stringent, Centers 3 7 8
Most stringent, Homes 2 3 3

To facilitate interpretation, I report the inverse of the staff-to-child ratios, that is, the number of children
per adult in the classroom.

Before presenting the results, it is worth discussing why a priori the factor price
response of an increase in the stringency of staff-to-child ratios is ambiguous: If the
minimum ratio for both types of providers becomes more stringent, Lemma 3 tells us
that the overall level of prices increases by the change in the ratio times the wage of
childcare providers. Because of this increase in price, some families may demand less
quantity of childcare τP, or exit the market altogether. The degree to which they are able
or willing to do that depends on their family characteristics. For instance, if they have
a lot of relative care available, they might find it easy to substitute. However, if the
quality of their relatives is very low, they might not want do so. This effect depresses
demand for childcare, and all else equal, it depresses the wages of Lead Teachers and
childcare workers. Moreover, note that an increase in the stringency of the minimum
ratio makes the pricing schedule flatter for qualities for which the minimum ratio is
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binding. This can be seen again in the expression for P in Lemma 3. Intuitively, the
mandatory minimum staff-to-child ratio distorts more the cost minimization problem
of providers offering lower quality than the cost minimization problem of the ones
offering higher quality. Because of that, it reduces the cost difference of providing
higher vs lower quality, and compresses the price schedule. This force encourages
families to buy higher quality. Because of this increase in quality demanded, childcare
providers demand more E

k . However, the flattening of the pricing schedule occurs only
for qualities for which the mandatory minimum ratio is binding, so demand for C

k

does not increase. This effect alone increases the demand for E and has no effect on
the demand for C. Moreover, this increase in quality demanded may come together
with a decrease in the quantity of childcare for some families, which decreases the
demands of both E and C. This reduction on the quantity demanded decreases wE and
wC. The third partial-equilibrium force is reallocation from the efficiency units of lead
teachers E to hours of care C. If the mandatory minimum staff-to-child ratio increases,
providers offering qualities for which the minimum ratio is binding need to increase C

k

to meet licensing requirements. In order to keep quality constant, they need to decrease
E
k . This force alone increases wC and decreases wE. Overall, the effect on demand of the
factors C and E of increasing mandatory minimum staff-to-child ratios is ambiguous,
and therefore the response of their factor prices is ambiguous. Appendix O shows
quantitative evidence that reinforces that message.

Although the distribution of initial heterogeneity across households is identified
separately for each state, the number of observations per state is small. Because of that,
I assume that all states within the same US Census Region have the same distribution of
household characteristics and initial assets, but regions differ from one another. Given
that assumption, states within the same region only differ in their regulations. Because
here I am giving all the states the same regulations (the least, most lenient, and the
average regulation), I can just report the outcomes for each region (because all the states
within the same region have the same outcomes)19.

As it can be seen, the impact of changing the leniency of regulations on the wages of
teachers and the lead teacher premium is not negligible. First, note from Figure 3 that
the effect of regulations’ stringency on the lead teacher premium is positive in the South,
negative in the West and Northeast, and non-monotonic in the Midwest. This is because
the different forces described above through which regulations’ stringency affects factor
prices are more or less important in different regions and within the same region at
different levels of stringency. This confirms the observation that the effect of regulations
stringency on factors’ prices is theoretically ambiguous in sign. The quantitative effect
of regulations’ stringency on the wage of childcare workers is positive for every region.
Going from the average regulation to the most stringent increases childcare worker
wages by up to 2-3%. Moreover, going from the average regulation to the least stringent
decreases wages by around 2% in all regions. Despite the heterogeneous effects of ratios’

19I am maintaining this assumption throughout the whole results section, and also when estimating
the labor supply shifters for Lead Teachers and Childcare Workers (see Appendix N. Moreover, I am
dropping states for which I do not observe any family with all the necessary observables to simulate
their initial state.
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Figure 3: Comparison of average Lead Teacher Premia for different regulation stringencies

Figure 4: Comparison of Child Care Worker Earnings for different regulation stringencies

stringency on the lead teacher’s premium across regions, the effect on lead teachers’
wages is monotonic. This is because the positive effect of regulations on the price of
an hour of caregiving work wC dominates the effects on the premium per hour for the
average lead teacher wE. In fact, increasing the stringency of regulations in the same
fashion increases the wages of lead teachers by 1.5%-2%, and decreasing the stringency
in the same fashion decreases the wages of lead teachers by 1%-2%.
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Figure 5: Comparison of Lead Teacher average Earnings for different regulation stringencies

7.2 Effects on children skills

In this section, I explore the effects that changing from lenient staff-to-child ratios to
more stringent staff-to-child ratios has on the skills of children. In order to illustrate
these effects, I focus again on an extreme change in the leniency of the regulations. In
particular, I focus on how the skills of children at kindergarten entry would change
when going from the most lenient regulation (corresponding to the lowest mandatory
minimum staff-to-child ratios for each age and type of care) to the most stringent one
(corresponding to the highest mandatory minimum staff-to-child ratio for each age and
type of care).

Figure 6 shows the overall effects on the distribution of skills of children born to
two-parent and single-parent households. Increasing the stringency of the regulation
increases skills overall the distribution of children born to two-parent families, and
the increase in skills (measured in standard deviations of a math test score taken at
kindergarten entry) is roughly constant across the distribution. For children born to
one-parent families, the picture is pretty different. Skills at the top of the distribution
increase more than at the middle, and skills at the bottom decrease. See Appendix P for
an analysis of skill-maximizing ratios at each percentile.

These relatively muted effects on skills overall distribution can be a product of
moderate gains for most children or the product large skill drops compensated by
large skill gains. In order to see which of these two stories dominates, I look at the
distribution of General Equilibrium Treatment Effects

Define:

∆ logθi,4 = logθi,4(Rmax)− logθi,4(Rmin) ,

to be the change in child skills at kindergarten entry (measure in standard deviations of
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Figure 6: Change associated to going from the least to the most stringent set of regulations in the
1st,10th,20th,30th,40th,50th,60th,70th,80th,90th and 99th percentiles of the distribution of skills for
children born to Two-Parent and Single-Parent families.

a math test score) for child i between a scenario in which the US is subject to regulations
Rmin to a scenario in which the US is subject to regulations Rmax.

Figure 7 shows that the treatment effects ∆ logθi,4 are heterogeneous across children,
and the heterogeneity is much larger for children of Single Mothers Table 2 illustrates

Figure 7: Distribution of GE treatment effects on children skills at pre-school entry. Treatment consists of
changing the regulations from the least to the most stringent and letting wages adjust

the same point using percentiles of the distribution of logθi,4 for children in Two-Parent
households and Single-Mother households.
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Percentiles of ∆ logθ4,i for TP and SM families

Percentile Two Parent Families Single Mothers
1 -24.07% -47.09%
5 -6.45% -29.36%
10 -3.77% -14.76%
25 -1.42% -0.07%
50 -0.07% 1.08%
75 1.64% 14.11%
90 7.23% 24.87%
95 14.50% 29.47%
99 24.39% 38.86%

Table 2: Percentiles of the treatment effect distribution (measured in standard deviations of a math test
score at kindergarten entry) for Two-Parent households and Single-Mother households. X% corresponds
to X% of a standard deviation in the data. The treatment consists of changing families from a scenario
with lenient regulations to a scenario with stringent regulations. Treatment effects are general equilibrium
treatment effects and incorporate the change in wages of Lead Teachers and Child Care Workers between
scenarios

Hence, the relatively small changes overall the skill distribution in Figure 6 is the
product of some children experiencing large skill gains, and other children experiencing
large skill losses. This opens the question: Who are the children that win, and who are
the children that lose as a consequence of more stringent regulations? Tables ?? and ??
answer that question:

Winners and losers for TP families

∆ logθ > 0 ∆ logθ < 0 ∆ logθ > p95 ∆ logθ < p5
a1 76000 367000 51000 73000
wm 11 18 9 11
wf 14 24 11 15
logqm -0.03 0.09 -0.15 -0.05
logqf -0.11 0.01 -0.27 -0.15
logqr2 0.94 1.36 0.13 1.05
logqr3 2.89 3.69 1.38 3.13
T
r 3831 4112 3553 4213

Table 3: Average characteristics of winners and losers for TP families.p5 and p95 are the 5th and 95th
percentiles of the treatment effect distribution respectively.
Assets and wages expressed in 2001 dollars, and the endowment of relative care expressed in annual
hours. Assets are rounded to the nearest 1000 and wages to the nearest dollar.

From tables 3 and 4 uncovers different skill-redistribution patterns First, children
gaining skills from the increase in stringency are on average born to richer families,
both in terms of assets and parental wages Second, children that experience high skill
gains are born to poorer families than children that experience moderate gains, and
children that experience high skill losses are born to poorer families than children that
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Winners and losers for SM families

∆ logθ > 0 ∆ logθ < 0 ∆ logθ > p95 ∆ logθ < p5
a1 26000 65000 7000 33000
wm 10 10 8 7
logqm -0.09 -0.14 -0.15 -0.23
logqr2 0.85 0.53 0.49 -0.10
logqr3 2.79 1.97 2.34 0.07
T
r 3817 4670 2465 4967

Table 4: Average characteristics of winners and losers for TP families.p5 and p95 are the 5th and 95th
percentiles of the treatment effect distribution respectively.
Assets and wages are expressed in 2001 dollars, and the endowment of relative care is expressed in
annual hours. Assets are rounded to the nearest 1000 and wages to the nearest dollar.

experience moderate losses. And third, skill gains are decreasing in available hours of
relative care.

These patterns deserve some comment. First, remembering Figure 1 we can see that
an increase in mandatory minimum ratios increases the price level for lower qualities
(for high enough qualities mandatory-minimum ratios do not bind), and flattens the
price schedule. The increase in the price level induces families that can substitute paid
care to reduce hours of paid care, or even exit the childcare market altogether. The
families that can do that are families with higher relative (they can use more relative care
without exhausting it), or with more assets (For example, one of the parents can reduce
their working hours and spend more time with their child). On the other hand, families
with lower relative care available or lower assets are less able to substitute paid care
when the price increase. Moreover, because of the flattening effect of regulations (the
price of lower qualities increases more than the price of higher qualities), those families
may end up buying higher quality. The children of those families experience skill gains.
Finally, the equilibrium effects of more stringent regulations increases the wages of
lead teachers and childcare workers, which means that even quality levels for which
the ratios are not binding are more expensive now. Therefore, families buying quality
levels high enough that the ratio is not binding after the increase in the stringency of
the regulation still face higher prices, and as a consequence of that they reduce their
quality of childcare, their quantity, or both. As a consequence of that, their children
suffer skill losses.

8 Conclusion

Mandatory minimum staff-to-child ratios are a common licensing requirement for
childcare providers across states. Despite the empirical evidence showing that they
have an effect on the market provision of childcare, their effect on children’s skills was
unexplored. This paper fills this gap by building and estimating an equilibrium model
of the childcare market in which paid providers are subject to mandatory minimum
staff-to-child ratios and the wages of teachers adjust in response to changes in regu-
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lations. This paper shows that changes in the leniency of the minimum ratios have
non-negligible impacts on the wages of teachers. Moreover, their impact on the overall
distribution of children’s skills is modest, but these muted effects hide large heterogene-
ity. Some children experience large skill gains from the increase in stringency, whereas
others experience large skill losses. Both the highest and the lowest skill losses are
experience by children born to poor families. Children that experience large skill gains
are born to poor families with lower assets and less relative care available, whereas
children experiencing large skill losses are born to poor families with higher assets and
more relative care available.

This paper is a step toward understanding the effect of different childcare market
regulations on the development of young children and their impact on the labor market
of early childhood educators. A fruitful avenue for future research is examining
the equilibrium impacts of other widespread regulatory requirements for childcare
providers, such as minimum educational requirements for teachers.
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Appendices

A Proofs of Lemmas 1-3

A.1 Proof of Lemma 1

Consider the cost minimization problem of a childcare provider offering h child-hours20

at quality q:

min
E,C

wEE+wCC

s.t A
(
E

h

)αE(C
h

)1−αE
= q

C

h
⩾ R

The Karush-Kuhn-Tucker conditions are given by:

E :wE− λqαEA

(
E

h

)αE−1(C
h

)1−αE
= 0

C :wC− λq(1−αE)

(
E

h

)αE(C
h

)−αE

−
µR

h
= 0

CS : µR

[
R−

C

h

]
= 0 ,

where λq and µR are the Lagrange multipliers of the quality constraint and the staff-
to-child ratio constraints respectively, and CS stands for Complementary Slackness.
The previous set of equations are necessary conditions for a local minimum, so a
cost-minimizing choice of E,C has to satisfy the previous KKT conditions.

If µR = 0, a solution to the previous equations has to satisfy:

E :wE− λqαEA

(
E

h

)αE−1(C
h

)1−αE
= 0

C :wC− λq(1−αE)

(
E

h

)αE(C
h

)−αE

= 0 .

After some manipulations, we get:

E=

(
wC

wE
αE

1−αE

)1−αE qh
A

C=

(
wE

wC
1−αE
αE

)αE qh
A

.

20Note that how h is split between the number of children and hours per child does not matter to the
provider, since the price per child per hour is P(q)

40



Note that this choice of C is feasible as long as

q⩾AR

(
wC

wE
αE

1−αE

)αE
= q∗ .

The previous critical point is the optimum for q⩾ q∗, since it coincides with the only
critical point of the relaxed problem in which R = 0. Let’s see what happens when
q < q∗. By Complementary Slackness it follows that the mandatory minimum staff-to-
child ratio binds (otherwise we get the previous expression for C, which violates the
minimum ratio constraint). Hence, in this region C is given by:

C= Rh

Providing quality q requires: (
E

h

)αE
=

(
h

C

)1−αE qh
A

.

This together with C
h = R implies:

E=

(
1

R

)1−αE
αE

( q
A

) 1
αE h .

This establishes the result. 21

A.2 Proof of Lemma 2

The cost function is the value of the cost-minimization problem in the previous sub-
section. This implies:

c(q,h) =wEE(h,q)+wCC(h,q) ,

where E(h,q) and C(h,q) are the conditional factor demands in Lemma 1. This estab-
lishes the result

A.3 Proof of Lemma 3

The expression for the price-schedule in Lemma 3 is given by the cost c(q), where c(q)
satisfies (in a slight abuse of notation):

c(q)h= c(h,q) .

Hence, proving that P(q) is given by the expression in Lemma 3 is equivalent to arguing
P(q) = c(q). Suppose P(q) > c(q). Then the profit function for a generic provider
is monotonically increasing in the hours supplied h, which implies that the profit

21The fact that the only critical point is indeed an optimum follows from the fact that an optimum
exists (From Weierstrass Theorem and a bounding above argument) and that the KKT are necessary
conditions.
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maximization problem of the provider has no solution, which is inconsistent with
equilibrium.

Moreover, if P(q) < c(q) then the profit maximization problem of the provider is
solved by offering 0 hours of childcare, which is inconsistent with an equilibrium in
which positive hours are offered.

Hence, in an equilibrium in which positive hours are supplied, it must be the case
that P(q) = c(q). That establishes the result.

B Value functions are log-additive in skills

We can prove that the value function for the single mother is log-additive in the child’s
skills. The proof for Two-Parent families is similar and is omitted here.

Proposition 1. For t= 1,2,3

VSMt (at,w
m,qm,qrt,T

r
,θt,o

CB
t ,o

HB
t ) = ṼSMt (at,w

m,qm,qrt,T
r
,oCBt ,o

HB
t )+ Γθt logθθt

with

Γθ4 = δθ,4

and

Γθt = βγθ,tΓ
θ
t+1+ δθ,t

Proof. The proof proceeds by backward induction. Hence, we have to establish the
result for t= 3 first.

Recall that for t= 3 the value function of the single mother is given by:
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T
logqp+γr,t
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T
logqrt+ηt+1 (PF)

at+1 ⩾ a (AC)

D ∈ {CB,HB,N} (DCP)

for t= 3
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If we substitute (PF) in the RHS of the value function equation we get:
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and
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we can establish the result for t= 3
What remains to be shown is that the backward induction step works. So suppose

that
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We want to show that:
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Note that for t= 1,2 we have:
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Using the induction hypothesis we get that:
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Substituting (PF) we get:
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we get the desired result.
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C Solution algorithm for the individual problem

We are going to focus on the Two-Parent family case. The Single Mother case is
analogous. Denote the time-invariant type of a generic Two-Parent family as H, that is:

H= (wm,wf,qm,qf, {qrt}
3
t=1,T

r
) .

Moreover, denote as Yt all the choices that can be made by a Two-Parent household at
time t except for future assets and the paid-care type choice, that is:
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m
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m
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Define

Ψi,ftt = βΓθt+1γi,t ,

for time investment category i=m,f,r,p and for t= 1,2,3, with

Γθ4 = δθ,4 .

For given initial assets at, time-invariant type H, and utility costs cCBt ,cHBt the Two-
Parent household solves the following problem:
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Note that for the sake of simulating from the probability distribution of individuals’
optimal choices, we do not need to solve for the optimal choice for each level of
oCBt ,o

HB
t , but rather it is enough to solve for the (at+1,Yt) for each D and for the choice

probabilities for D=N,CB,HB. Hence, define the D-specific value functions:
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ṼTP,Nt (at,H) = max
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∑
i=m,f,r

Ψit
τit
T

logqi+EtṼ
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for D= CB,HB.
Let the policy functions from the D-specific problem be given by gTP,Dω,t (at,H) for

ω ∈Ω= {c,a ′,nm,nf, lm, lf,τm,τf,τr,τp,qp} and D=N,CB,HB.
We can re-write this problem as:

ṼTP,Dt (at,H) = max
at+1⩾a

{
V
TP,D
t (at,H;at+1)+βEt+1ṼTPt+1(at+1,H,o
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}
(Dynamic choice)
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where for D= CB,HB:

V
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and an analogous expression applies to VTP,N.
The previous discussion implies that if we happen to know V

TP,D
t (at+1;at,H) and

EtṼt+1(at+1,H,ot+1,CB,ot+1,HB) as a function of at+1, then we can solve for at+1,Y in two
steps:

1. First, we choose at+1 to solve Dynamic choice. This is a one-dimensional opti-
mization problem.

2. Second, we choose Yt to solve Static Choice given the choice of assets at+1. This is
an optimization problem in 10 dimensions, but given the special structure of the
problem and the discussion in C.2 it is still tractable.

Finally, given ṼTP,Dt for D= CB,HB,N it is straightforward to find choice probabilities
in closed-form according to:

P(D=N|at,H) = e
−λCB(Ṽ

CB−ṼN)e−λHB(Ṽ
HB−ṼN) (Choice Probabilities)

P(D=HB|at,H) =



(1− e−λHB(Ṽ
HB−ṼN))e−λCB(Ṽ

CB−ṼN)+ 1− e−λCB(Ṽ
CB−ṼN)−

λCB
λCB+λH

e−λHB(Ṽ
HB−ṼCB)(1− e−(λCB+λHB)(Ṽ

CB−ṼN))

if ṼHB ⩾ ṼCB

(1− e−λHB(Ṽ
HB−ṼN))e−λCB(Ṽ

CB−ṼN)+

e−λCB(Ṽ
CB−ṼHB)− e−λCB(Ṽ

CB−ṼN)−
λCB

λCB+λHB
e−λHB(Ṽ

HB−ṼCB)
[
e−(λCB+λHB)(Ṽ

CB−ṼHB)− e−(λCB+λHB)(Ṽ
CB−ṼN)

]
otherwise

P(D= CB|at,H) = 1−P(D=HB|at,H)−P(D=N|at,H) ,

and where the particular parametric form follows from the fact that oCB ∼ exp(λCB) and
oHB ∼ exp(λHB). Note that I am leaving the dependence of the Value Functions on at,H
to avoid clutter of notation.
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Next, we need to describe how to compute EtV̂
TP
t+1(at,H,o

CB
t ,o

HB
t ) for t = 1,2 and

V
TP,D
t (at+1;at,H) for t= 1,2 and D= CB,HB,N

C.1 Computing flow indirect value and future expected value as a
function of assets

C.1.1 Computing flow indirect value

For given at,H,D,t, we want to solve for VTP,D(at,H;at+1) as a function of at+1, where
V
TP,D

(at,H;at+1) is defined as before. In order to do that, we define a grid for assets
tomorrow a ′

grid = {a,a1(at,H), . . . ,amax(at,H)}. Then, for each a ′ in that grid we solve

for VTP,Dt (at,H;a ′) by maximizing Static Choice with respect to Yt. This can be done by
finding all the critical points of the asset conditional lagrangian following the procedure
in C.2. Once we have done this, a continuous approximation to VTP,Dt (at,H;at+1) is
given by simply using linear interpolation over the values of this function on a ′

grid.

C.1.2 Computing Expected Continuation value

This part of the solution algorithm proceeds by backward induction. Fix a family time-
invariant type H and type-specific grid for assets agrid = {a,a1(H),a2(H), . . . ,amax(H)}

• For each a ∈ agrid and for each paid-care type choice P, the Two-Parent family last
period problem (t = 3) can be solved by finding all the critical points of the last
period lagrangian, which are characterized by the FOC in the asset-conditional
lagrangian in Appendix L plus the following optimality condition for assets:

a4 = δac

These critical points can be found by following the procedure in C.2 and letting
a4 = δac (so no separate numerical optimization is required to find assets). Then,
all the critical points found are evaluated, and the one that maximizes the last
period flow utility plus the continuation value of assets is selected. Its associated
value yields ṼTP,D3 (agrid,H). From here, we can get the expected value function at
time t (and in particular at time t= 3) as:

EtṼ
TP
3 (at,H,o

CB
t ,o

HB
t ) =P(D= CB|at,H)

(
ṼTP,CB(at,H)−E(oCBt |Dt = CB)

)
+

P(D=HB|at,H)
(
ṼTP,HB(at,H)−E(oHBt |Dt =HB)

)
+P(Dt =N|at,H)Ṽ

TP,N
t (at,H) ,

where the expression for the choice probabilities is available in closed form as a
function of ṼTP,D as in Choice Probabilities and the expression for the conditional
expectation of the cost is available in closed form also as a function of ṼTP,D

according to the expression in C.5.3

• At t = 2,1 we want to solve Dynamic choice for each at ∈ agrid and for each
D= CB,HB,N. Hence, for a fix at and choice of paid care P we need to know the
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static indirect flow payoff VTP,Dt (at,H,at+1) associated with choosing at+1. This
can be done as described above. Note that we may or may not choose this grid
to coincide with agrid. In general, it will make sense not to make them coin-
cide. Once we have done this, a continuous approximation to VTP,Dt (at,H;at+1)
is given by simply using linear interpolation over the values of this function
on a ′

grid. Analogously, we can find a continuous approximation to the expected
continuation value by using linear interpolation on agrid. Given these two objects,
solving Dynamic choice and getting ṼTP,Dt (at,H) simply amounts to solving an
optimization problem with bounds in one dimension. Once we do that for each
at ∈ agrid and each D = CB,HB,N, we can find E1ṼTP2 (at,H) for each at by using
the same closed-form expression for the expected continuation value as for t= 3

C.2 Asset-conditional problem at t = 1,2 for the two parent family
given paid care type D= CB,HB

Here I explain how to solve the asset-conditional problem when the family is choosing
paid care for pricing functions given by:

P
j
t(q

p,τp) =


PqτP if q > q∗j,t[
Pq

1
ρP +κP

]
τP if qP ⩽ q∗j,t

Given choices of assets tomorrow a ′ and private care type P a the Lagrangian of the
two-parent family is given by:

L= logc+ δml log lm+ δfl log lf+ δmτ logτm+ δfτ logτf+Ψm
τm

T
logqm+Ψf

τf

T
logqf+

Ψr
τr

T
logqr+Ψp

τp

T
logqp+ λSC

[
T − τm− τf− τr− τp

]
+ λm

[
T
m
− τm−nm− lm

]
+

λf
[
T
f
− τf−nf− lf

]
+ λBC

[
a(1+ r)−a ′+wmnm+wfnf− c−PP(qp)τp

]
+

µrττ
r+µpττ

p+µmn n
m+µfnn

f+ωr
[
T
r
− τr

]
Notice that I am omitting time subscripts and family type superscript to avoid clatter

of notation. Also note that I am ignoring the terms associated to the non-negativity
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constraints that are never binding. Taking First Order Conditions we get:

∂L

∂c
=
1

c
− λBC = 0

∂L

∂lm
=
δml
lm

− λm = 0

∂L

∂nm
=−λm+ λBCwm+µmn = 0

∂L

∂lf
=
δfl
lf

− λf = 0

∂L

∂nf
=−λf+ λBCwf+µfn = 0

∂L

∂τm
=
δmτ
τm

+
Ψm

T
logqm− λSC− λm = 0

∂L

∂τf
=
δfτ
τf

+
Ψf

T
logqf− λSC− λf = 0

∂L

∂τr
=
Ψr

T
logqr− λSC+µrτ−ω

r = 0

∂L

∂τp
=
Ψp

T
logqp− λSC− λBCPD(qp)+µpτ = 0

∂L

∂qp
= Ψp

τp

T

1

qp
− λBC

dPD

dqp
(qp)τP = 0

The idea of the solution algorithm for the Static Choice is to find all the critical points of
the Lagrangian of the family’s problem at time t conditional on choosing childcare type
D and then pick the one that yields maximal flow payoff. In order to do that, I split the
choice set in multiple regions and show that in most cases finding a critical point of
the asset-conditional Lagrangian amounts to solving a one-dimensional root-finding
problem. Unfortunately, the function whose root we need to find is not the same in
each region, so I adopt a case-by-case approach. The remaining of this sub-appendix
details this strategy.

1. Interior solution The necessary conditions for an interior solution are given by:

δml
lm

=
wm

c
(TPI1)

δfl
lf

=
wf

c
(TPI2)

δmτ
τm

+
Ψm

T
logqm− λSC =

δml
lm

(TPI3)

δfτ
τf

+
Ψf

T
logqf− λSC =

δfl
lf

(TPI4)

ΨP

T
logqP − λSC =

PD(qP)

c
(TPI5)

Ψp
τp

T

1

qp
=
1

c

dPD

dqp
(qp)τP if qP , q∗l,j,t (TPI6)

λSC =
Ψr

T
logqrt (TPI7)
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These FOC have three possible solutions, one for qP < q∗ (ignoring the subscripts
for clarity), another one for qP = q∗ and another one for qP > q∗.

• qP < q∗

Note that for qP < q∗
dPP(qP)

dqP
= PP

1

ρP
(qP)

1−ρP
ρP

where we are ignoring the subscripts in α to reduce the clutter of notation.
Using equation TPI6 then we get:

qP,−(c) =

(
ρP

PP
ΨP

T
c

)ρP
(qP,−(c))

Plugging this in equation TPI5 and using the expression for PP(qP) we get
that consumption has to satisfy:

ΨP

T
ρP log

(
ρP

PD
ΨP

T

)
+
Ψp

T
ρP logc−

κP
c

− λSC− ρP
ΨP

T
= 0 (RFc)

where

Let g(c) be the LHS of the previous expression, and note that limc→0g(c) =

−∞ and limc→∞g(c) = ∞. Hence, by the intermediate value theorem and
the fact that g is monotonically increasing, g(c) has only one root in R+ and a
bisection converges linearly to that root. Let that root be cr. Then qP is given
by qP,−(c) evaluated at cr
If qP > q∗ then there cannot be an interior solution with qP < q∗. If qP ⩽ q∗

then the candidate to an interior optimum with qP < q∗ is given by:

c= cr

qP =

(
ρP

PD
ΨP

T
cr

)ρP
lm =

δml c

wm

lf =
δflc

wf

τm =
δmτ

δml
lm −

(
Ψm

T
logqm− Ψr

T
logqrt

)
τf =

δfτ
δfl
lf
−
(
Ψf

T
logqf− Ψr

T
logqrt

)
nm = T

m
− τm− lm

nf = T
f
− τf− lf

τP =
wmnm+wfnf+at(1+ r)− cr−at+1

PD(qP)

τr = T − τP − τm− τf
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• qP = q∗ Using qP = q∗ and TPI5 we get:

c∗(q,λSC) =
PP(q)

ΨP

T
logqP − λSC

(c(q∗,λSC))

Evaluating this at (q= q∗,λSC = Ψr

T
logqr) we get c.

From here, we can obtain lm, lf,τm,τf,nm,nf,τP,τr in the same way as in the
candidate to interior optimum with qP < q∗

• qP > q∗ In this case PP(qP) = PPqPτP From TPI5 and TPI6 we get:

qP,+(λSC) = exp
{
1+

T

ΨP
λSC

}
(qP,+(λSC))

Evaluating this expression at λSC = Ψr

T
logqrt we get our candidate for qP.

Evaluating qP,+(λSC) at the resulting qP and at λSC = Ψr

T
logqrt we get con-

sumption as:

c=
P
P
qP

ΨP

T

(c+(qP))

From here, we can obtain lm, lf,τm,τf,nm,nf,τP,τr in the same way as in the
candidate to interior optimum with qP < q∗

If in any of the previous sub-cases for qp any of the variables is negative, that
means that no interior optimum can exist with that q∗ and we can proceed to
check the next sub-case.

2. Mother does not work (nm = 0) , everything else is interior nf > 0,0 < τr <
T
r
,τP > 0. (At most 3 critical points) . First, note that since relative care is interior

we have:
λSC =

Ψr

T
logqrt

In this case τm and lm have to satisfy:

δmτ
τm

+
Ψm

T
logqm− λSC =

δml
lm

Letting τm = ϕτT
m we can re-write this as:

δmτ

ϕτT
m +

Ψm

T
logqm− λSC =

δml

(1−ϕτ)T
m

If we substract the LHS to the RHS we can notice that by the intermediate value
theorem there is a unique solution for ϕτ in (0,1) Given that in an optimum
0 < ϕτ < 1 we have that ϕτ has to satisfy the following quadratic equation:

(
Ψm

T
m

T
logqm− T

m
λSC

)
︸                             ︷︷                             ︸

a

ϕ2τ+

[
δml + δmτ −

(
Ψm

T
m

T
logqm− T

m
λSC

)]
︸                                               ︷︷                                               ︸

b

ϕτ+−δmτ︸ ︷︷ ︸
c

= 0

(QE ϕmτ )
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The only admissible solution to this quadratic equation is given by:

ϕτ =
−b+

√
b2− 4ac

2a

There are three candidates for qP,c that can be part of an optimum. These are
precisely the same as in 1. For each combination (τm, lm,c,qP) (there are at most
6) let:

lf =
δflc

wf

τf =
δfτ

δfl
lf
−
(
Ψf

T
logqf− Ψr

T
logqr

)
nf = T

f
− τf− lf

τP =
wmnm+wfnf+at(1+ r)− cr−at+1

PP(qP)

τr = T − τP − τm− τf

If for some of these candidates to optimum, some of these variables is negative,
we can discard this candidate. If for all of them is negative then no optimum can
exist on this region.

3. Father does not work (nf = 0), everything else is interior nm > 0,0 < τr < T r,τP >
0 (At most 6 critical points)

Symmetric to 2. The corresponding quadratic equation for τf is given by:(
Ψf
T
f

T
logqf− T fλSC

)
︸                         ︷︷                         ︸

a

ϕ2τ+

[
δfl + δ

f
τ−

(
Ψf
T
f

T
logqf− λSC

)]
︸                                      ︷︷                                      ︸

b

ϕτ− δfτ︸︷︷︸
c

= 0 (QE ϕfτ)

4. Mother does not work and no relative care (nm = 0,τr = 0), everything else is
interior. In this case TPI2 and TPI6 still hold. Apart from these two conditions a
critical point in this region is characterized by the following equations:

λSC =
Ψm

T
logqm+

δmτ
τm

−
δml
lm

λSC =
Ψf

T
logqf+

δfτ
τf

−
δfl
lf

ΨP

T
logqP − λSC =

PD(qP)

c

lm+ τm = T
m

τP + τf+ τm = T

c+at+1+P
P(qP)τP =wfnf+at(1+ r)

nf+ lf+ τf = T
f
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• qP < q∗

This case has to be solved numerically. The numerical approach here in-
volves a one-dimensional root-finding algorithm nested within another one-
dimensional root-finding algorithm.

A critical point in this region is characterized by a root of the supervision
constraint residual as a function of λSC, which is defined as:

SCR(λSC) = T − τm(λSC)− τf(λSC)− τP(λSC)

where: c(λSC) solves RFc and qP(λSC) is given by evaluating qP,−(c) at c(λSC).
Moreover

lf(λSC) =
δflc(λ

SC)

wf

τf(λSC) =
δfτ

δfl
lf
−
(
Ψf

T
logqf− λSC

)
and

nf(λSC) = T
f
− τf(λSC)− lf(λSC)

τm(λSC) = ϕmτ T
m where ϕmτ solves QE ϕmτ .

lm(λSC) is given by:
lm(λSC) = T

m
− τm(λSC)

τP(λSC) =
at(1+ r)+w

fnf(λSC)−at+1− c(λ
SC)

PP(qP(λSC))

• qP = q∗ This case can be solved as a one-dimensional root-finding problem
in the budget constraint residual, which is given by:

BCR(c) = at(1+ r)+w
fnf(c)−PP (q∗)τP(c)− c−at+1

with

lf(c) =
δflc

wf

λSC(c) =
ΨP

T
logq∗−

PP(q∗)

c

τm(c) = ϕmτ T
m, where ϕmτ solves Equation QE ϕmτ .

τf(c) =
δfτ

δfl
lf(c)

−
(
Ψf

T
logqf− λSC(c)

)
and

lm(c) = T
m
− τm(c)

τP(c) = T − τf(c)− τm(c)

nf(c) = T
f
− τf(c)− lf(c)
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• qP > q∗ This case can be solved as a one-dimensional root-finding algorithm
on the Supervision Constraint Residual as a function of λSC:

SCR(λSC) := T − τm(λSC)− τf(λSC)− τP(λSC) = 0

with:

qP(λSC) = exp
(
1+

T

ΨP
λSC
)

c(λSC) =
P
P
qP(λSC)
ΨP

T

lf(λSC) =
δflc(λ

SC)

wf

τm(λSC) = ϕmτ T
m, where ϕmτ solves Equation QE ϕmτ .

τf(c) =
δfτ

δfl
lf(λSC)

−
(
Ψf

T
logqf− λSC

)
nf(λSC) = T

f
− τf(λSC)− lf(λSC)

lm(λSC) = T
m
− τm(λSC)

τP(λSC) =
wfnf(λSC)+at(1+ r)− c(λ

SC)−at+1

P
P
qP(λSC)

5. Mother does not work and relative care endowment is exhausted (nm = 0,τr = T ),
everything else is interior.

Similar to 4, but with τr = T r

6. Father does not work and no relative care (nf = 0,τr = 0), everything else is
interior.

Symmetric to 4

7. Father does not work and relative care endowment is exhausted (nf = 0,τr = T ),
everything else is interior.

Similar to 6 but with τr = T r

8. Father and mother do not work (nm = nf = 0), everything else interior

In this case TPI3-TPI7 still need to hold. These equations jointly with nm = nf = 0,
the budget constraints, the supervision constraints and the parental time-use
constraints determine the critical points.

Moreover, since τr is interior we already know that in a critical point in this region:

λSC =
Ψr

T
logqr

Again, let’s analyze the three possible cases for qP separately:
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• qP < q∗ Because TPI5 and TPI6 still need to hold, c has to satisfy RFc. Quality
of paid care qP can be obtained by evaluating qP,−(c) at the resulting c. Since
nm = nf = 0 and TPI3 and TPI4 need to hold, τm = ϕmτ T

m and τf = ϕfτT
f

where ϕmτ and ϕfτ satisfy QE ϕmτ and QE ϕfτ respectively. From the parental
time-use constraints:

lm = T
m
− τm

lf = T
f
− τf

From the budget constraint:

τP =
at(1+ r)− c−at+1

P(qP)

From here we can get τr as:

τr = T − τP − τf− τm

• qP = q∗ Evaluating c(q∗,λSC) at (q,λSC) = (q∗, Ψ
r

T
logqr). From here, we can

get the remaining variables as in the qP < q∗ case

• qP > q∗ Evaluating qP,+(λSC) at λSC = Ψr

T
logqr we get qP.

Evaluating c+(qP) at qP(λSC) we get c(λSC)
From here, we can get the rest of the variables as in the previous two cases.

9. Father and mother do not work and relative care is 0 (nf = nm = τr = 0)

In this case TPI3-TPI6 have to hold.

• q < q∗ This case can be solved for again as a one-dimensional root-finding
problem nested within another one-dimensional root-finding problem.
A critical point in this region is characterized by a root of the supervision
constraint residual as a function of λSC, which is defined as:

SCR(λSC) = T − τm(λSC)− τf(λSC)− τP(λSC)

where:
c(λSC) solves RFc and qP(λSC) is given by evaluating qP,−(c) at c(λSC). More-
over
τm(λSC) = ϕmτ T

m where ϕmτ solves QE ϕmτ and τf(λSC) = ϕfτT
f where ϕfτ

solves QE ϕfτ .
lm(λSC) is given by:

lm(λSC) = T
m
− τm(λSC)

lf(λSC) is given by:
lf(λSC) = T

F
− τF(λSC)

and:

τP(λSC) =
at(1+ r)−at+1− c(λ

SC)

PP(qP(λSC))
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• qP = q∗ This case can be solved as a one-dimensional root-finding problem
in the budget constraint residual, which is given by:

BCR(c) = at(1+ r)+w
fnf(c)−PP (q∗)τP(c)− c−at+1

with

λSC(c) =
ΨP

T
logq∗−

PP(q∗)

c

τm(c) = ϕmτ T
m, where ϕmτ solves Equation QE ϕmτ and τf(c) = ϕfτT

f, where
ϕfτ solves Equation QE ϕfτ .
and

lm(c) = T
m
− τm(c)

lf(c) = T
f
− τf(c)

τP(c) = T − τf(c)− τm(c)

nf(c) = T
f
− τf(c)− lf(c)

• qP > q∗ This case can be solved as a one-dimensional root-finding algorithm
on the Supervision Constraint Residual as a function of λSC:

SCR(λSC) := T − τm(λSC)− τf(λSC)− τP(λSC) = 0

with:

qP(λSC) = exp
(
1+

T

ΨP
λSC
)

c(λSC) =
P
P
qP(λSC)
ΨP

T

lf(λSC) =
δflc(λ

SC)

wf

τm(λSC) = ϕmτ T
m, where ϕmτ solves Equation QE ϕmτ and τf(λSC) = ϕfτT

f,
where ϕfτ solves Equation QE ϕfτ

lf(λSC) = T
f
− τf(λSC)

lm(λSC) = T
m
− τm(λSC)

τP(λSC) =
at(1+ r)− c(λ

SC)−at+1

P
P
qP(λSC)

10. Father and mother do not work and relative care is exhausted (nf = nm = 0,τr =

T
r)

Same as 9 but with τr = T r

11. Relative care is 0, everything else interior (τr = 0, everything else interior)

In this case TPI1- TPI6 have to hold.
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• qP < q∗

This case can be solved for again as a one-dimensional root-finding problem
nested within another one-dimensional root-finding problem.
A critical point in this region is characterized by a root of the supervision
constraint residual as a function of λSC, which is defined as:

SCR(λSC) = T − τm(λSC)− τf(λSC)− τP(λSC)

where:
c(λSC) solves RFc and qP(λSC) is given by evaluating qP,−(c) at c(λSC). More-
over

lm(λSC) =
δml c(λ

SC)

wm

lf(λSC) =
δflc(λ

SC)

wf

τm =
δmτ

δml
lm(λSC)

−
(
Ψm

T
logqm− λSC

)
τf =

δfτ
δfl

lf(λSC)
−
(
Ψf

T
logqf− λSC

)
and

τP(λSC) =
at(1+ r)+w

fnf(λSC)+wmnm(λSC)−at+1− c(λ
SC)

PP(qP(λSC))

• qP = q∗ This case can be solved as a one-dimensional root-finding problem
in the budget constraint residual, which is given by:

BCR(c) = at(1+ r)+w
fnf(c)+wmnm(c)−PP (q∗)τP(c)− c−at+1

with

lf(c) =
δflc

wf

lm(c) =
δml c

wm

λSC(c) =
ΨP

T
logq∗−

PP(q∗)

c

τm(c) =
δmτ

δml
lm(c) −

(
Ψm

T
logqm− λSC(c)

)
τf(c) =

δfτ
δfl
lf(c)

−
(
Ψf

T
logqf− λSC(c)

)
τP(c) = T − τf(c)− τm(c)

nf(c) = T
f
− τf(c)− lf(c)

nm(c) = T
m
− τm(c)− lm(c)
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• qP > q∗ This case can be solved as a one-dimensional root-finding algorithm
on the Supervision Constraint Residual as a function of λSC:

SCR(λSC) := T − τm(λSC)− τf(λSC)− τP(λSC) = 0

with:

qP(λSC) = exp
(
1+

T

ΨP
λSC
)

c(λSC) =
P
P
qP(λSC)
ΨP

T

lf(λSC) =
δflc(λ

SC)

wf

lm(λSC) =
δml c(λ

SC)

wm

τf(λSC) =
δfτ

δfl
lf(λSC)

−
(
Ψf

T
logqf− λSC

)
τm(λSC) =

δmτ
δml

lm(λSC)
−
(
Ψm

T
logqm− λSC

)
nf(λSC) = T

f
− τf(λSC)− lf(λSC)

nm(λSC) = T
m
− τm(λSC)− lm(λSC)

τP(λSC) =
wfnf(λSC)+at(1+ r)− c(λ

SC)−at+1

P
P
qP(λSC)

12. Relative care is exhausted, everything else interior (τr = T r)

Same as 11 but with τr = T r

13. Paid care is zero, everything else is interior (τP = 0, else interior) In this case
TPI1-TPI5 and TPI7 need to hold.

The critical points in this region can be solved for as a one-dimensional root-
finding problem in the Budget Constraint Residual as a function of c, which is
given by:

BCR(c) := at(1+ r)+w
fnf(c)+wmnm(c)− c−at+1
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where:

lm(c) =
δml c

wm

lf(c) =
δflc

wf

λSC(c) =
Ψr

T
logqr

τf(c) =
δfτ

δfl
lf(c)

−
(
Ψf

T
logqf− λSC(c)

)
τm(c) =

δmτ
δml
lm(c) −

(
Ψm

T
logqm− λSC(c)

)
τr(c) = T − τm(c)− τf(c)

nm(c) = T
m
− lm(c)− τm(c)

nf(c) = T
f
− lf(c)− τf(c)

14. Paid care and relative care are zero (τr = τP = 0) , everything else interior. In a
critical point in this region TPI1-TPI4 have to hold.

This case can be solved for as a one-dimensional root-finding algorithm on the
Budget Constraint Residual as a function of c:

BCR(c) := at(1+ r)+w
fnf(c)+wmnm(c)− c−at+1

where:
lm(c) =

δml c

wm

lf(c) =
δflc

wf

τm(c) = ϕSCm T

τf(c) = (1−ϕSCm )T

where ϕSCm is satisfies the following quadratic equation:

a(ϕSCm )2+
(
δmτ + δfτ−a

)
ϕSCm − δmτ = 0 (QEϕSCm (c))

with a given by:

a= Ψm logqm−Ψf logqf+
wf−wm

c
T

Note that the only admissible solution 22 to the previous quadratic equation is
given by:

ϕSCm =
a−(δmτ + δfτ)+

√
(δmτ + δfτ−a)

2+ 4aδmτ
2a

(ϕSCm )

22See C.5.2
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nm(c) = T
m
− τm(c)− lm(c)

nf(c) = T
f
− τf(c)− lf(c)

15. Relative care is exhausted and paid care is zero (τr = T r,τP = 0)

Similar to 14 but with τr = T r and with a given by:

a=
T − T

r

T
Ψm logqm−

T − T
r

T
Ψf logqf+

wf−wm

c

(
T − T

r
)

16. Mother does not work, paid care is zero, and everything else is interior (nm =

τP = 0, else interior.)

In this region TPI2- TPI4 and TPI7 have to hold.

A critical point in this region solves a root-finding problem in the Budget Con-
straint Residual as a function of c:

BCR(c) := at(1+ r)+w
fnf(c)− c−at+1

Where:

lf(c) =
δflc

wf

λSC(c) =
Ψr

T
logqr

τf(c) =
δfτ

δfl
lf(c)

−
(
Ψf

T
logqf− λSC(c)

)
τm(c) = ϕmτ T

m and lm = (1−ϕmτ T
m
) where τm solves QE ϕmτ

nf(c) = T
f
− τf(c)− lf(c)

τr(c) = T − τm(c)− τP(c)

17. Father does not work, paid care is zero, and everything else is interior (nf =
τP = 0, else interior.)

Similar to 16.

18. Mother and father do not work, paid care is zero, and everything else is interior
(nf = nm = τP = 0, else interior.)

In this case TPI3, TPI4 and TPI7
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The critical point in this region (which is unique) can be found in closed form:

λSC =
Ψr

T
logqr

τm = ϕmτ T
m

τf = ϕfτT
f

ϕmτ and ϕfτ solve QE ϕmτ and QE ϕfτ respectively

lm = (1−ϕmτ )T
m

lf = (1−ϕfτ)T
f

c= at(1+ r)−at+1

τr = T − τm− τf

19. Mother does not work, paid and relative care are zero, everything else is interior
(nm = τP = τr = 0)

In this case TPI2- TPI4 have to hold. Critical points in this region can be found by
solving a root-finding problem in the supervision constraint residual as a function
of c:

T − τm(c)− τf(c)

where:

nf(c) =
c+at+1−at(1+ r)

wf

lf(c) =
δflc

wf

τf(c) = T
f
− τf(c)− lf(c)

λSC(c) =
δfτ
τf

+
Ψf

T
logqf−

δfl
lf

ϕmτ solves QE ϕmτ
τm(c) = ϕmτ T

m

lm(c) = (1−ϕmτ )T
m

20. Father does not work, paid and relative care are zero, everything else is interior
(nf = τP = τr = 0)

Similar to 19

21. Mother does not work, paid care is zero, relative care is exhausted and every-
thing else is interior (nm = τP = 0,τr = T

r)

Similar to 19 but with the Supervision Constraint Residual given by:

SCR(c) = T − T
r
− τm(c)− τf(c)
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22. Father does not work, paid care is zero, relative care is exhausted and everything
else is interior (nf = τP = 0,τr = T r)

Similar to 21

23. Mother and father do not work, relative care and paid care are zero (nm = nf =

τP = τr = 0) From TPI3, TPI4, the parental time-use constraints and the supervision
constraint we get that τm solves:

δmτ
τm

+
δfl

T
f
− T + τm

−
δfτ

T − τm
−

δml

T
m
− τm

+
Ψm

T
logqm−

Ψf

T
logqf = 0 (RF τm)

Note that since the LHS is strictly decreasing for τm ∈
[
max{0,T − T f},min{T,Tm}

]
,

the solution in this region is unique and a bisection algorithm with the corre-
sponding bounds converges linearly to the candidate to τm.

From here we get:

lm = T
m
− τm

τf = T − τm

lf = T
f
− τf

c= at(1+ r)−at+1

24. Mother and father do not work, relative care is exhausted and paid care is zero
(nm = nf = τP = 0,τr = T

r) This case is similar to 23.

The root-finding problem is now described by:

δmτ
τm

+
δfl

T
f
−(T − T

r
)+ τm

−
δfτ

T − T
r
− τm

−
δml

T
m
− τm

+
Ψm

T
logqm−

Ψf

T
logqf = 0

(RF’ τm)

with bounds given by:[
max{0,T − T r− T f},min{T − T r,Tm}

]
and with:

lm = T
m
− τm

τf = T − T
r
− τm

lf = T
f
− τf

c= at(1+ r)−at+1
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C.3 Asset-conditional problem at t = 1,2 for the two parent family
given paid care type P =N

The critical points for this case are coincide with the critical points in regions 13-24 in
the previous two cases.

C.4 Last period problem t= 3

Same as asset-conditional problem in periods t= 1,2, but now a4 can be found in closed
form given consumption according to:

a4 = δac

C.5 Miscellaneous of useful analytical results

C.5.1 Bounds for root-finding in λSC

In this sub-appendix we find bounds for the root-search procedures in λSC that are used
in regions 4- 7 and regions 9 - 12.

First, note that from the FOC of the asset-conditional Lagrangian with respect to τr

and from complementary slackness we get that

λSC ⩾
Ψr

T
logqr if τr = 0

and

λSC ⩽
Ψr

T
logqr if τr = T

Moreover, for the case qP < q∗ we know that λSC has to be consistent with c not
being greater than total resources and with qP < q∗ Together with the fact that the c
implied by RFc is strictly increasing in λSC this implies:

λSC ⩽
ΨP

T
ρP log

(
ρP

PP
ΨP

T

)
+
ΨP

T
ρP logcmax−

κP
cmax

− ρP
ΨP

T

where cmax = min

{
at(1+ r)−at+1+w

mT
m
+wfT

f
,
PPT

ρPΨp
(q∗)

1
ρP

}

By a similar logic, for the case qP > q∗ we know that λSC has to be consistent with c
being less than total resources and with qP > q∗. This implies:

Ψp

T
(logq∗− 1)⩽ λSC ⩽

Ψp

T

(
log
(
cmax

P
P

Ψp

T

)
− 1

)
where now cmax is given by:

cmax = at(1+ r)−at+1+w
mT

m
+wfT

f

Hence, except for the case in which τr = T and qP < q∗ we have finite lower and
upper-bounds to conduct the root-search in λSC.
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C.5.2 Existence and uniqueness of solution for QEϕSCm (c)

In this sub-appendix we show that the there is only one admissible solution for ϕSCm in
equation QEϕSCm (c) In principle, QEϕSCm (c) is a quadratic equation and has two possible
solutions, which are given by:

ϕ+ =
a−(δmτ + δfτ)+

√
(δmτ + δfτ−a)

2+ 4aδmτ
2a

ϕ− =
a−(δmτ + δfτ)−

√
(δmτ + δfτ−a)

2+ 4aδmτ
2a

First, we can show that for any value of a the discriminant is positive, which implies
that the two possible values of ϕ are real. Let the discriminant be given by:

∆m,SCϕ = (δmτ + δfτ−a)
2+ 4aδmτ

If a⩾ 0 this number is obviously positive. Suppose that a < 0 Then:

∆m,SCϕ = (δmτ + δfτ−a)
2+ 4aδmτ =

a2+(δmτ + δfτ)
2+ 2(δmτ − δfτ)a⩾ a2+(δmτ − δfτ)

2+ 2(δmτ − δfτ)a=
(
a+(δmτ − δfτ)

)2
⩾ 0

This proves the two roots are real.
Now we can show that ϕ− is not an admissible solution for any value of a : Suppose

a > 0. Then ϕ− < 0 iff:

a−(δmτ + δfτ)−
√
(δmτ + δfτ−a)

2+ 4aδmτ < 0 ⇐⇒(
a−(δmτ + δfτ)

)2
<
(
a−(δmτ + δfτ)

)2
+ 4aδmτ

which if a > 0 is always the case. Now, we want to show that if a < 0 then ϕ+ > 1. To
see why note that if a < 0 then:

(δmτ + δfτ−a)
2+ 4aδmτ = a2+(δmτ + δmτ )

2− 2(δfτ− δ
m
τ )a > a

2+(δmτ + δfτ)
2+ 2(δmτ + δfτ)a= (a+ δmτ + δfτ)

Hence: √
(δmτ + δfτ−a)

2+ 4aδmτ <−|a+ δ,τ+ δ
f
τ|< a+ δ

m
τ + δfτ ,

which implies:

a−(δmτ + δfτ)−
√
(δmτ + δfτ−a)

2+ 4aδmτ < 2a .

This implies the desired result.
Now we want to show that ϕ+ is admissible for any value of a.
First we want to show that ϕ+ ⩾ 0. If a > 0 then we have:
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ϕ+ ⇐⇒ a−(δmτ + δfτ)+
√
(δmτ + δfτ−a)

2+ 4aδmτ ⩾ 0

Which is true since:

a−(δmτ + δfτ)+
√
(δmτ + δfτ−a)

2+ 4aδmτ ⩾ a−(δmτ + δfτ)+ |a−(δmτ + δfτ)|⩾ 0

(Where the first inequality follows from 4δmτ a > 0)

Now suppose a < 0. Then we have that:

|a−(δmτ + δfτ)|⩾
√
(δmτ + δfτ−a)

2 ⩾
√

(δmτ + δfτ−a)
2+ 4aδmτ

This implies:

−a+ δmτ + δfτ = |a|+ |δmτ + δfτ|⩾ |a−(δmτ + δfτ)|⩾
√
(δmτ + δfτ−a)

2 ⩾
√

(δmτ + δfτ−a)
2+ 4aδmτ

Which implies:

a−(δmτ + δfτ)+
√
(δmτ + δfτ−a)

2+ 4aδmτ ⩽ 0

which if a < 0 implies that ϕ+ > 0.
Finally, we want to show that ϕ+ < 1.
First suppose that a > 0 Note that in this case ϕ+ < 1 iff:

a−(δmτ + δfτ)+
√

(δmτ + δfτ−a)
2+ 4aδmτ < 2a ⇐⇒

a+ δmτ + δfτ >
√

(δmτ + δfτ−a)
2+ 4aδmτ

Which is true since:

a+ δmτ + δfτ =
√

(a+ δfτ+ δ
m
τ )
2 >

√
a2+(δmτ + δτf)

2− 2(δfτ− δ
m
τ )a=

√
(δmτ + δfτ−a)

2+ 4aδmτ

Now suppose that a < 0: Note that:

ϕ+ < 1 ⇐⇒ a−(δmτ + δfτ)+
√

(δmτ + δfτ−a)
2+ 4aδmτ > 2a ⇐⇒√

(δmτ + δfτ−a)
2+ 4aδmτ > a+ δ

m
τ + δfτ

Now, note that:

a2+(δmτ + δfτ)
2+ 2(δmτ + δfτ)a < a

2+(δmτ + δfτ)
2− 2(δfτ− δ

m
τ )a

Hence: √
a2+(δmτ + δfτ)

2− 2(δfτ− δ
m
τ )a >

√
a2+(δmτ + δfτ)

2+ 2(δmτ + δfτ)a

=
√

(a+ δmτ + δfτ)
2 = |a+ δmτ + δfτ|⩾ a+ δ

m
τ + δfτ

Hence, ϕ+ is the unique admissible solution to QEϕSCm (c).
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C.5.3 Expected cost of the optimal paid care choice

Let ETrExp(λ,a,b) be the expectation of an exponential with parameter λ truncated
below by a and above by b:

ETrExp(λ,a,b) =


1
λ−e

−λb(1/λ+b)

Fexp(b;λ) if a⩽ 0
( 1λ )(e

−λa−e−λb)+ae−λa−be−λb

Fexp(b;λ))−Fexp(a;λ) if a⩾ 0

Let ṼSM.it > Ṽ
SM.j
t

E [ci|P = i] =
(
(1− Fexp(Ṽ

j− ṼN;λj))ETrExp(λi,0, Ṽ i− ṼN)Fexp(Ṽ i− ṼN;λi)+

1

λi
Fexp(Ṽ

j− ṼN;λj)−
λj

λi+ λj
e−λi(Ṽ

i−Ṽj)(
1

λi
+ Ṽ i− Ṽ j)Fexp(Ṽj− Ṽ

N;λi+ λj)

−
λj

λi+ λj
e−λi(Ṽ

i−Ṽj)
ETrExp(λi+ λj,0, Ṽ

j− ṼN)Fexp(Ṽ
j− ṼN;λi+ λj)

)/
P(P = i)

E

[
cj|D= j

]
=
(
(1− Fexp(Ṽ

i− ṼN;λi))ETrExp(λi,0, Ṽ j− ṼN)Fexp(Ṽ j− ṼN;λj)+

1

λj

(
Fexp(Ṽ

i− ṼN);λi)− Fexp(Ṽ i− Ṽ j);λi)
)
−

λi
λj+ λi

e−λj(Ṽ
j−Ṽi)

( 1
λj

+ Ṽ j− Ṽ i
)
(Fexp(Ṽ

i− ṼN;λi+ λj)− Fexp(Ṽ i− Ṽ j;λi+ λj))−

λi
λj+ λi

e−λj(Ṽ
j−Ṽi)

ETrExp(λi, Ṽ
i− Ṽ j, Ṽ i− ṼN)(Fexp(Ṽ

i− ṼN;λi+ λj)− Fexp(Ṽ i− Ṽ j;λi+ λj))
)/

P(D= j)

D Simulating optimal households’ choices

This Appendix describes how to approximate the distribution of households’ optimal
choices given a price schedule for Center and Home-Based childcare quality. I am going
to specialize the exposition in this Appendix to Two-Parent households, but the same
logic applies to Single Mothers.

Note that given initial assets a1 and the time-invariant type of a Two-Parent family
H, solving the optimization problem of this Two-Parent family amounts to finding the
probability distribution over sequences of optimal choices {at+1,Dt,Yt}

3
t=1, where, as

in Appendix C at+1 denotes future assets, Dt denotes the choice over types of care
D=N,CB,HB, and Yt denotes all the other choices:

Yt = (ct,n
m
t ,n

f
t, l
m
t , l

f
t,τ

m
t ,τ

f
t,τ

r
t,τ

p
t ,q

p
t ) .

Let P({at+1,Dt,Yt}
3
t=1|a1,H) be the probability of a Two-Parent Household choosing

sequence {at+1,Dt,Yt}
3
t=1 given that its initial level of assets and time-invariant type is

(a1,H). Here I describe how to compute this probability distribution over sequences.
Note that in a given period t the optimal choice of assets tomorrow at+1 and the
other continuous choices Yt is deterministic given the discrete choice Dt. Call this
conditional choices at+1(at,H,Dt) and Yt(at,H,Dt) (where at+1 is simply gDt

a ′.t(at,H)
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and Yt(at,H,Dt) is the image of the cartesian product of theDt -specific policy functions
for the choices in Yt. This means that for each family starting with (a1,H) there are at
most 27 sequences {at+1,Dt,Yt}

3
t=1 that occur with positive probability. Each of those

sequences can be uniquely identified by its associated history of discrete choices D3,
where Dt = (Pt−1,Dt) with D1 =D1. That is, for each (sub) history of discrete choices
Dt there is a (sub) history of choices at+1(Dt,a1,H) Yt(Dt),a1,H given by:

at+1 =
(
at,at+1,((at)t−1,H,(D

t)t)
)

,

Yt =
(
Yt−1,Yt((at)t−1,H,(D

t)t)
)

,

with
a2 = a2(a1,H,D

1) ,

Y1 = Y1(a1,H,D
1) ,

where (a,b,c)t denotes the t-th element of vector (a,b,c)
Now I describe how to find these histories and its associated probabilities

• For a given time invariant family type H we can find EtṼ
TP
t+1 for t= 1,2 following

the procedure described in C.1.2.

• For a Household with initial assets and time-invariant type (a1,H) we can find
a2(D) and ṼTP,Dt (at,H) for D = N,CB,HB by solving Dynamic choice (see Ap-
pendix C for details on how to do that). Given a2(D1), we can solve Static Choice
to get Y1(a1,H,a2,D1). The probability of choosingD1 =D (P(D1 =D|a1,H)) given
that the household starts the period with initial assets a1 and time-invariant fam-
ily type H are given in closed form by Choice Probabilities using the computed
{ṼTP,D}D=N,CB,HB. Now that we know how to find a2(a1,H,D1) and Y1(a1,H,D1)
for D1 =N,CB,HB and the probability distribution over discrete choices D, I ex-
plain how to compute choices and probabilities for continuation histories starting
at t= 2,3

• For a given historyDt−1 with initial assets at(Dt−1) = at(Dt−1)t and time-invariant
family type H we can find at+1(D) and ṼTP,Dt (at,H) for D=N,CB,HB by solving
Dynamic choice (see Appendix C for details on how to do that, and note that in
t= 3 the static and the dynamic choices can be solved for at once). Given at+1(Dt),
we can solve Static Choice to get Yt(at,H,at+1,Dt). The probability of choosing
Dt =D (P(Dt =D|at,H)) given that the household starts the period with initial
assets at and time-invariant family type H are given in closed form by Choice
Probabilities using the computed {ṼTP,D}D=N,CB,HB From this we can construct
the 3 continuation histories (corresponding to Dt = N,CB,HB) as at+1(Dt) =

(at,at+1(Dt)), Yt(Dt) = (Yt−1,Y(at,H,at+1,Dt)). The associated probability to each
history is given by

P(Dt|a1,H) =P(Dt−1|a1,H)P(Dt =D|at,H) .
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Note that we can write relevant aggregates in terms of the histories of choices and its
associated probabilities. For instance, the cumulative distribution function of Two-
Parent Households at t= 3 can be written as:

G(a3,H) =

∫
a1,H̃⩽H

∑
D2=N,CB,HB

∑
D1=N,CB,HB

P
TP,D2(a2,H)P

TP,D1(a1,H)

1(gD2
2,a ′(a2,H)⩽ a3)1(g

D1
1,a ′(a1,H) = a2)dG1(a1,H) =∫

a1,H̃⩽H

∑
D3∈D3

P(D3|a1,H)1
(
a3(D3)3 ⩽ a3

)
dG1(a1,H) ,

where D3 denotes the set of all possible histories D3. The second equality follows
from the fact that at(Dt) is constructed using optimality given the sequence of discrete
choices and the definition of P(Dt|a1,H)

E Solving for equilibrium factor prices

At a high level, the equilibrium solver proceeds as follows:

• Start with a guess for factor prices wE0 ,w
C
0

• Given factor prices, find the price schedules that satisfy profit maximization and
free entry for center and home-based childcare providers according to Lemma 3

• Given the equilibrium price schedules, simulate Single-Mother and Two-Parent
Households decisions. Among those decisions, the quality, quantity, and type of
paid childcare decisions are going to be informative for the aggregate demand of
efficiency units of lead teachers E and the aggregate demand of caregiver hours C.

• Find the demands of E andC by childcare providers necessary to satisfy household
demands of quality, quantity, and type of paid childcare. More precisely:

C=

∫
a1,H

( ∑
P3∈P3

P(P3|a1,H)
(
C
(P3)1
1 ((qP)31)(τ

P)32+C
(P3)2
2 ((qP)32)(τ

P)32+

C
(P3)3
3 ((qP)33)(τ

P)33
))
dG1(a1,H) ,

E=

∫
a1,H

( ∑
P3∈P3

P(P3|a1,H)
(
E
(P3)1
1 ((qP)31)(τ

P)32+E
(P3)2
2 ((qP)32)(τ

P)32+

E
(P3)3
3 ((qP)33)(τ

P)33
))
dG1(a1,H) .

where EPt ,CPt are the conditional factor demands in 1, P3 denotes a history of
childcare-type choices as in D, (qP)3,(τP)3 are the elements of Yt(P3) corresponding
to τP and qP, Yt(Pt) is constructed as in D, and the integral is calculated by drawing
Montecarlo draws from the initial distribution G1(a1,H)
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• Update the guess for factor prices to be a convex combination of the old prices
and the prices that would make the factor supply satisfy the new demand. That
is:

wCnew =
( C−E

HCCWLT

)1/ηCCW

,

wLT =
( E

HLTLT

)1/ηLT
,

wEnew =wLT −wCnew ,

(wE1 ,w
C
1 ) = γ

damping(wE0 ,w
C
0 )+ (1−γdamping)(wEnew,w

C
new)

• Iterate until (wE1 ,w
C
1 ) converge.
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F Imputation of parents’ wages

In this appendix, I describe how I impute the wages of mothers and fathers when those
are missing. In principle, imputation may not be a good idea if most of the missing
wages are missing due to endogenous selection on unobservables on the labor force.
This is less of a problem in this context because in order for the wage of a parent not to
be observable due to non-participation, that parent would need to not participate in all
4 waves (remember that I am assuming that wages are time-invariant). In fact, of the
3200 families for which the wage of the mother is missing, 1450 are missing because
the mother does not participate in the labor force in any wave. For fathers, of the 1600
Two-Parent families for which the wage of the father is missing, only 50 are due to
the father not working in any wave23. In my sample, a household may have missing
wages for some parent in a given period because that parent failed to report earnings
or hours worked in that period, or because their combination of hours and earnings
implied an hourly wage lower than half the federal minimum wage (which I consider
miss-reporting).

Moreover, given that the model does not generate a selection rule with a known
parametric form, and given that the model is unlikely to have the single-index property
needed for many semi-parametric selection-correction procedures, a model-consistent
selection correction for the identification of the joint distribution of wages, other indi-
vidual characteristics, and assets would be challenging.

In order to impute wages, I follow Appendix D in De Nardi, French, Jones and
McGee (2021). This imputation strategy is an analogous version of hotdeck imputation
with continuous covariates. First, for the observations with non-missing wages for
mothers, I regress their log-wage on a vector of observables z and get fitted values z ′β
and residuals ϵ. The variables in z include a quadratic polynomial of the age of the
mother in wage 1, dummies for educational achievement, dummies for self-reported
health status, dummies for US Census Region, and Dummies for the 2000 Urban and
Rural classification24. I split the sub-sample of households with an observed mother
wage according to the deciles of z ′β, and I keep the distribution of ϵ for each of those
deciles. Then, for the households for which the mother has a missing wage, I calculate
z ′β, and I sample an ϵ at random from the set of households in the same decile bin of
z ′β with an observed wage.

The procedure to impute the wages of fathers is analogous. The R2 or the initial
mean-fitting step of the imputation procedure is 34% for mothers and 36% for fathers.

G Measuring assets

In this appendix, I describe how I measure assets in the ECLS-B. I call this "mea-
surement" and not "imputation" because unlike in the case of wages, I account for

23Number of families rounded to the nearest 50 to comply with ECLS-B disclosure rules
24The ECLS-B provides the 2000 US Census Urban and Rural classification of the households in the

sample. The US Census divides areas according to their density and other criteria in Urban Areas, Urban
Clusters, and Rural Areas
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measurement error in assets when estimating parameters. The ECLS-B does not contain
a measure of net worth, nor it does contain information on the monetary value of most
assets and debts that are commonly used in the calculation of net worth. However,
the ECLS-B does contain some information on the portfolio composition of families.
In particular, the ECLS-B asks families the following questions about their investment
portfolio

• Whether they own assets from a list of low-risk assets25

• Whether they any assets from a list of risky assets26

• Whether they own a car or a truck

• Whether they own the house they live in

• If they own the house they live in, whether they have a mortgage

• If they own the house they live in, the value of the house.

All of these questions can be mapped to questions in the SCF 2001. In order to exploit
this, I regress27 net worth on the portfolio variables that can also be found in ECLS-B,
and in demographic and economic variables that are common to ECLS-B and SCF 2001.
These demographic and economic variables are household income, dummies for the
educational attainment of the mother and the father, the ages of the mother and the
father, and an interaction of their ages with their educational attainment dummies.
Call the vector of portfolio, demographic, and other economic variables z, and the
vector of coefficiencts estimated in the regression using SCF 2001 data β. Because all
the variables in z are available in ECLS-B, I can construct a measure of assets for each
family at each wave as:

ãi,t = z
′
i,tβ .

The R2 of the linear prediction for assets is 67%, which implies that the amount of
measurement error in ãi,t is moderate. Note that because net worth is observable in
SCF 2001, the marginal distribution of measurement error in ãi,t is identified from
computing ai,t− z ′i,tβ in SCF 2001.

25The precise question is:"Do you, or anyone in your household,have any money in checking or
savings accounts, money market funds, certificates of deposit, or government savings bonds, or Treasury
bills, including IRAs?"

26The precise question is: "Do you or anyone in your household have any shares of stock in publicly
held corporations, mutual funds, or investment trusts, including stocks in IRAs?"

27For the sake of comparability, when running this regression, I only use families in SCF with children
aged 0-6 years old and that correspond to the definition of Two-Parent Household or Single-Mother
Household used in this paper.
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H Identification of the relative care endowment function

Recall that the relative care endowment function is a deterministic function of a vector
of discrete covariates, call it ZT,r. Abusing notation slightly we write this as:

T
r
= T

r
(ZT,r)< T .

Proposition 2. Suppose that ∀ϵ > 0 and

P(qm < ϵ,qf < ϵ|a1,w
m,wf,qr,ZT,r)> 0

for all
(a1,w

m,wf,qr,ZT,r) ∈ supp(a1,wm,wf,qrZT,r)

Then
max

τr∈supp(τr|ZT,r)
τr = T

r
(ZT,r)

and
P(τr = T

r
(ZT,r)|ZT,r)> 0 for all ZT,r ∈ suppZT,r

Proof. It suffices to show that for every ZT,r ∈ suppZT,r there exists a set of states with
positive probability measure X such that

for all (a1,wm,wf,qm,qf, {qr}3t=1,T
r
,cCB1 ,c

HB
1 ) = x ∈ X we have that τr1(x) = T

r
(ZT,r)

Since T r(ZT,r) is time-invariant, I am going to make the argument focusing on the first
period, and omitting time subscripts when convenient.

Pick sets bounded above for initial assets A, maternal wages Wm and paternal wages
Wf such that

P((a1,w
m,wf) ∈A×Wm,Wf|ZT,r)> 0

Let qr,∗ be such that the set
{qr : qr > qr,∗}

has positive probability measure given (a1,q
m,qf) ∈ A×Wm,Wf and ZT,r (Note that

there is at least one qr,∗ regardless of whether qr is a continuous or a discrete random
variable as long as the distribution of qr given (a1,q

m,qf) is non-degenerate).
Moreover, let

qm,∗ = exp

{
T

Ψm

(
Ψr

T
logqr,∗−

δmτ

T −
T
r
(ZT,r)
2

)}

and

qf,∗ = exp

{
T

Ψf

(
Ψr

T
logqr,∗−

δfτ

T −
T
r
(ZT,r)
2

)}
Note that

P(qm < qm,∗,qf < qf,∗|(a1,w
m,wf) ∈A×Wm×Wf,qr ⩾ qr,∗,ZT,r)> 0

73



Hence

P((a1,w
m,wf) ∈A×Wm×Wf,qm < qm,∗,qf < qf,∗,qr ⩾ qr,∗|ZT,r)> 0

Define
cj,∗ = sup

x∈X−cj

ṼTP,j(x)

where

X−cj = {(a1,w
m,wf,qm,qf,T

r
) : (a1,w

m,wf) ∈A×Wm×Wf

qm < qm,∗,qf < qf,∗,qr ⩾ qr,∗,T
r
= T

r
(ZT,r)}

And note that cj,∗ is bounded above because X−cj is bounded above.
Since cj ∼ exp(λj) with cHB,cCB independent of each other and cj independent of

a1,w
m,wf,qm,qf,ZT,r for j= CB,HB we have that

P(cj > cj,∗|a1,wm,wf,qm,qf,ZT,r)> 0 for all (a1,wm,wf,qm,qf,ZT,r) for j= CB,HB

Hence

P((a1,w
m,wf) ∈A×Wm×Wf,qm < qm,∗,qf < qf,∗,qr ⩾ qr,∗,cCB > c

∗
CB,cHB > c

∗
HB|Z

T,r)> 0

We are going to show now that if x ∈ X with

X= X−cj× {cCB : cCB > c
∗
CB}× {cHB : cHB > c

∗
HB}

then
τr1(x) = T

r
(ZT,r)

Suppose this is not the case for some x ∈ X. Because the fixed costs of using home-
based and center-based childcare are large enough it is not optimal to use any of those
childcare arrangements. Hence, it must be true that it is optimal at state x

τf1+ τ
m
1 > T − T

r
(ZT,r)

It must be the case then that either τm1 >
T−T

r
(ZT,r)
2 or τf1 >

T−T
r
(ZT,r)
2 .

Suppose that the first one is the case. Note that the marginal value of decreasing τm1
and increasing τr1 and lm by the same amount is given by:

−
[δml
lm

+
δmτ
τm1

+
ΨTP,m1

T
logqm−

ΨTP,r1

T
logqr

]
> 0

given that qm < qm,∗, qr > qr,∗ and τm1 >
T−T

r
(ZT,r)
2 . A similar contradiction argument

applies if τf1 >
T−T

r
(ZT,r)
2 . Hence, it is optimal to exhaust relative care for all x ∈ X, which

establishes the result.

The intuition of the result is that within each group of households defined by their
level of wages and household wealth, it is always possible to find households with
maternal and paternal childcare quality low enough and fixed costs of using center and
home-based care high enough, that exhausting relative care has to be optimal.

From here, we get that in order to identify T r(ZT,r) we just need to look at the
maximum of τr given ZT,r

The argument for Single Mother households is similar.
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H.1 Estimation

From the identification argument above we know that T r(ZT,r = z) can be estimated
as the maximum of hours of relative care within the demographic cell defined by
ZT,r = z. The variables I choose to include in ZT,r are the discretized age of the maternal
grandmother, the discretized age of the maternal grandfather and the number of adult
relatives living in the same household as the child. More precisely:

ZT,r = (GM age,GF age,N adult HH)

where:

GM age =



0 if Maternal Grandmother is dead

1 if Maternal Grandmother younger than 50

2 if Maternal Grandmother between 50 and 65

3 if Maternal Grandmother between 65 and 80

4 if Maternal Grandmother older than 80

GF age =



0 if Maternal Grandfather is dead

1 if Maternal Grandfather younger than 50

2 if Maternal Grandfather between 50 and 65

3 if Maternal Grandfather between 65 and 80

4 if Maternal Grandfather older than 80

N adult HH =



0 if no adult relative living in HH

1 if 1 adult relative living in HH

2 if 2 adult relatives living in HH

3 if 3 adult relatives living in HH

4 if 4 or more adult relatives living in HH

The resulting estimated distribution of relative care monthly endowments is given by
the following histogram:
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Figure 8: Histogram of estimated hours of relative care available to families each month

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

I Share of efficiency units of the lead teacher on the pro-
duction function of quality (αE)

Note that the First Order Conditions of the cost minimization problem for a childcare
provider producing quality above q∗ imply:

αE =
wEE

wCC+wEE
.

That is, childcare providers that offer high enough quality that the mandatory minimum
staff-to-child ratio is not binding choose efficiency units of the lead teachers and the
hours of childcare workers such that the income share of the efficiency units of the
lead teacher is equal to αE. Hence, αE is identified from the average income share of
the efficiency units of the lead teacher for childcare providers with staff-to-child ratios
above the minimum regulated one. Here I describe how I construct the data analog of
αE,i,t, the income share of the paid childcare provider that child i attends at age t. First,
for the subsample of children for which information on paid providers is observed at
age t, the wage of the lead teacher wLTi,t can be computed. Note that the hourly wage
of the lead teacher includes the remuneration of the care that she provides and her
efficiency units:

wLT =wCC+wEE .

Hence, the hourly income going towards paying the efficiency units of the lead teacher
is given by:

wEE=wLT −wC .

Given that childcare workers (the staff members of childcare provider different from
the lead teacher, CCW from now on) only provide care, their wage is the price of the
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care factor. Hence, I let wC in the data to be the average wage of childcare workers
at a given year in a given state. I get the wage of CCWs at a given year in a given
state from the BLS. Now we have the numerator of αE,i,t. In order to calculate the
denominator, we need wCC. As discussed before wC is an aggregate statistic from the
BLS. I let C be the average number of adults in the classroom. 28 Now, we can calculate
αE,i,t for each child i for which direct observations of paid care providers are conducted
at time t. Restricting attention to cases for which the number of adults per children
in the classroom is above the minimum regulated one and information on the wage
of teachers is available,and cases on a state and year for which the hourly wage of
childcare workers is lower than the average wage of lead teachers, we can estimate:

αE,i,t =
1

N

N∑
i=1

αE,i,t .

The results are given in the following table: Because the ECLS-B did not conduct a

Table 5: (αE,2,αE,3) estimated from bill shares

αE,2 αE,3

0.14 0.24
(0.0080) (0.0056)

NOTE: SE in parenthesis
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

direct observation of non-parental childcare arrangements at 9 months, I estimate αE,1
by extrapolating αE,2 and αE,3 according to:

αE,t =
exp(b0+b1t)

1+ exp(exp(b0+b1t))
,

where in a slight abuse of notation I am measuring t in months in the formula above.
This results in αE,1 = 0.093 (or αE,9mo = 0.093)

J Measurement systems and production functions of cog-
nitive skills

Quality of caregiving is hard to measure. Instead of assuming that quality of caregiving
is observable, I assume there is a battery of noisy measures for different types of
caregiving quality. For simplicity, I impose parametric restrictions on the relationship
between the noisy measures of quality and true latent quality:

˜logq
j,s

= µj,s+αj,s logqj+ ϵj,s ,

for j=m,f,r,p and s= 1, . . . ,Ns
28ECLS-B contains counts at 6 different times of the number of adults and children in the room where

the focal child receives care. I average the number of adults across counts to get C and the number of
children to get h
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The measurement system for children’s cognitive skills is analogous:

˜logθ
s

t = µ
s
θ,t+α

s
θ,t logθst + ϵ

s
θ,t .

J.1 Identification and estimation of the measurement system for non-
parental care

The measure of non-parental care (relative and paid) used in this paper is the Arnett
score. The relationship between the Arnett score and true quality of non-parental care
is given by the following linear measurement system:

Arnett
j
i,t = µ

Arnett
t +αArnettt logqjt+ ϵ

Arnett
t for j= r,p .

Note that I am allowing the parameters of the measurement system to vary with the
age of the child.

J.1.1 Factor loading of the Arnett score

Substituting the expression for the Arnett score measurement system in the production
function for quality production in paid childcare providers we get:

Arnetti,t = µ
Arnett
t +αArnettt

(
logAHBt + 1(Di,t = CB)(logACBt − logAHBt )

+αE,t log
(
E

k

)
+(1−αE,t) log

(
C

k

))
+ ϵArnettt =

µArnettt +αArnettt

(
logAHBt + 1(Di,t = CB)(logACBt − logAHBt )

)
+

αArnettt

(
αE,t log

(
E

k

)
+(1−αE,t) log

(
C

k

))
+ ϵArnettt

This means that αArnettt is identified from a regression of the Arnett score on a constant,
a dummy for the paid provider being center-based, and the input composite term

αE,t log
(
E

k

)
+(1−αE,t) log

(
C

k

)
.

It will be useful later to define:

Ârnetti,t = µ
Arnett
t +αArnettt

(
logAHBt + 1(Di,t = CB)(logACBt − logAHBt )+

αE,t log
(
E

k

)
+(1−αE,t) log

(
C

k

))
.

Note that we can construct the input composite term because αE,t is identified from
the previous section, C and k are the average number of adults and children in the
classroom respectively (as in the previous section), and E, the efficiency units of the
lead teacher, can be constructed according to:

E=
wLT −wC

wE
,
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where wLT is the hourly wage of the lead teacher in the classroom, wC is the average
wage of childcare workers in which the focal child leaves, and wE is the average
salary premium of lead teachers with respect to childcare workers in the state where
the average child lives. The intuition of this identification argument for αArnettt is
the following: The empirical elasticity of the Arnett score with respect to the input
composite term is equal to the elasticity of the Arnett score with respect to true quality
times the elasticity of true quality with respect to the input composite term. Because the
Production Function of quality is constant returns to scale, we know that this last term
has to be 1. Hence, the elasticity of the Arnett score with respect to the input composite
term has to be equal to the elasticity of the Arnett score with respect to true quality.
Estimates of the Arnett loadings are shown in Table 6

Table 6: Estimates of the Arnett score loadings

αAR2 αAR3
0.36 0.26
(0.08) (0.1)

NOTE: SE in parentheses
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

J.1.2 Identification of the Arnett score measurement system additive shifter

See Appendix J.5

J.2 Distribution of relative care

Relative care quality is a function of observables:

logqrt = X
′
q,rβ

q,r
t .

This implies the following relationship between the Arnett score and observables in
Xq,r:

ARNETT ri,t = µ
ARNETT
t +αARNETTt X ′

q,rβ
q,r
t + ϵARNETTi,t .

It will be useful to define:

̂ARNETT
r

i,t := µ
ARNETT
t +αARNETTt X ′

q,rβ
q,r
t .

The estimated dependence between ̂ARNETT
r

i,t and the observables in Xq,r is reported
in the following table

In the ECLS-B, the Arnett score is not available at 9 months. Because of that,
modeling the heterogeneity in relative care quality in the same way as for waves 2 and
3 is not possible. In order to still allow for heterogeneous relative care qualities across
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Table 7: Observable predictors of relative care quality

Variable ̂ARNETT
r

2
̂ARNETT

r

3

Grandmother High-School 0.30 0.28
(0.11) (0.21)

Grandmother College 0.43 0.52
(0.23) (0.42)

Grandmother Postgraduate 0.58 0.90
(0.31) (0.45)

Grandfather High School 0.23 -0.06
(0.12) (0.22)

Grandfather College 0.38 0.51
(0.21) (0.36)

Grandfather Postgraduate 0.46 0.29
(0.25) (0.59)

Grandfather missing education -0.17 -0.95
(0.17) (0.40)

Constant -0.42 -0.57
(0.09) (0.15)

Table 8: NOTE: SE in parenthesis.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

families without taking a stance on the overall quality of relative care with respect to
parental care, I assume that:

logqr2 = logqr1+g
q,r
1 .

Later I show that gq,r1 is identified. Note that because the location of maternal care is
normalized to 0, gq,r1 measures how good or bad at fostering cognitive development
become with respect to mothers from period 1 to period 2. For instance, if

E[logqm]>E[logqr1] ,

and gq,r1 > 0, then the gap in care quality (as measured as how conducive to cogni-
tive development a certain childcare arrangement is) between relatives and mothers
becomes narrower between 9 months and 2 years old.

J.3 Parental care

J.3.1 Constructing measures of parental care

I construct two measures of parenting quality for maternal and paternal quality. It is
convenient for one of those measures to be constructed from the same items. If both
maternal and paternal quality are measured in the same units, then it makes sense to
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impose γm,t = γf,t in the production function for skills. Therefore, I choose to construct
˜logq

m,1
and ˜logq

f,1
from a subset of questions asked to both the father and the mother

of the child in the third wave (when the child is 4 years old). More concretely:

˜logq
j,1

=

6∑
i=1

1
(
Ai , "Never"

)
for j=m,f .

Where each Ai denotes the answer to one of the following questions:

1. How often in the last month did the parent play with child using toys for building
things, like Lincoln Logs or Legos.

2. How often in the last month did the parent help the child to bed.

3. How often in the last month did the parent help the child to bathe.

4. How often in the last month did the parent take the child for a walk or to play
outside.

5. How often in the last month did the parent help the child to get dressed.

6. How often in the last month did the parent help the child to brush his teeth.

The second measure of maternal care ˜logq
m,1

combines information three different
instruments of ECLS-B: The parental interview at 9 months, the parental interview at
2 years old, and the Two-Bags Task at 4 years old. To operationalize that, I compute
two sub-scores: An interview score and a Two-Bag Task score 29. Then, I add the two
sub-scores.

• Interview Score I transform answers to questions from the parental interviews
at 9 months and 2 years old into 0-1 variables, I weigh them by 1 or -1 and I add
them up to form a mother interview score

• Two-Bag Task score I add up the Emotional Support and Cognitive Development
Scales and subtract the Intrusiveness and Detachment scales of the Two-Bag Task
measure at 4 years old to form a Two-Bag Task measure

The following table presents the questions from the parent interviews at ages 9 months
and 2 years old used to construct the mother interview sub-score, how are they recorded
into 0-1 variables, and their weight in the weighted sum:

29In the Two Bags Task the parent and the child have to play with two sets of toys. The interaction is
then recorded, observed and coded. In this case, different features of the observed behaviour or mood
of the parent and child are coded separetaly. I use the Sensitivity, Positive Regard, Intrusiveness, and
Stimulation of Cognitive Development at the Two years old assessment, and the Emotional Support,
Stimulation of Cognitive Development, Intrusiveness, and Detachment parental scales in the 4 years old
assessment. I choose not to use the Negative Regard Scale at either age because it intends to capture
the degree negative perception that the child has of the parent, as opposed to a behaviour or mood that
the parent presents during the interaction. For a more detailed discussion of the Two Bags Task see
Andreassen and Fletcher (2007)
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Table 9: Questions used for the mother interview sub-score

Question Transformation to 0-1
Questions asked when child is 9 months old
Used book/magazine on parenting 1 if Yes 0 if No (+)
How often play peekaboo with child 0 if Never 1 otherwise (+)
How often tickle child 0 if Never 1 otherwise (+)
How often play/walk with child outside 0 if Never 1 otherwise (+)

Questions asked when child is 2 years old
How often play chasing games with child 0 if Never 1 if otherwise (+)
How often play games indoors 0 if Never 1 if otherwise (+)
How often play/walk with child outside 0 if Never 1 otherwise (+)
Mother spanks child when child misbehaves 0 if No 1 if Yes (-)
Mother hits back child when child hits her 0 if No 1 if Yes (-)
Mother ignores child when child hits her 0 if No 1 if Yes (-)
Mother makes fun of child when child misbehaves 0 if No 1 if Yes (-)
Mother yells to child when child misbehaves 0 if No 1 if Yes (-)

(+) indicates a weight of +1 and (-) indicates a weight of -1

The ECLS-B does not assess direct interactions of the father and the child, except in
the very rare cases in which the father is the parent respondent (the parent responding
to the parent interviews), which happens in less than 1% of cases. Therefore, I construct
the second measure of father quality only for responses to questions to the father
interview when the child is 9 months, 2 years old, and 4 years old. As with the mother
interview sub-score, I transform the responses to 0-1 variables and add them up with
a weight of 1 or -1 to form a continuous score. The following table summarizes the
questions that I use, how I transform them to 0-1 variables, and their weight:

The correlations between the two measures of maternal and paternal care quality is
shown in Table 11

J.3.2 Identification and estimation of the measurement system of parental care

So far we have constructed two measures of maternal care quality and two measures of
paternal care quality:

˜logq
j,s

= µj,s+αj,s logqj+ ϵj,s ,

for j=m,f and s= 1,2 ,

with µj,1 = 0 and αj,1 = 0 for j=m,f It is going to be useful later to estimate µj,2 αj,2 for
j=m,f.

Note that if there is an instrument Z that is uncorrelated with measurement error in
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Table 10: Questions used for the second measure of father quality

Question Transformation to 0-1
Questions asked when child is 9 months old
How often read books to child? 0 if Never 1 otherwise (+)
How often tell stories to child? 0 if Never 1 otherwise (+)
How often sing songs to child 0 if Never 1 otherwise (+)
How often play peekaboo with child 0 if Never 1 otherwise (+)
How often tickle child 0 if Never 1 otherwise (+)
How often play/walk with child outside 0 if Never 1 otherwise (+)
How often talk about child 0 if Never 1 otherwise (+)
How often carry pictures of child 0 if Never 1 otherwise (+)
How often think about child 0 if Never 1 otherwise (+)
How often think that holding/cuddling child is fun 0 if Never 1 otherwise (+)
How often prefer to get things for child instead of himself 0 if Never 1 otherwise (+)
Think father must play with child 1 Agree/Strongly Agree,

0 otherwise (+)
Think father have long term effects on babies 1 Agree/Strongly Agree,

0 otherwise (+)
Think providing is more important than emotional support 0 Agree/Strongly Agree,

1 otherwise (+)
Think fatherhood is rewarding 1 Agree/Strongly Agree,

0 otherwise (+)

Questions asked when child is 2 years old
How often read books to child? 0 if Never 1 otherwise (+)
How often tell stories to child? 0 if Never 1 otherwise (+)
How often sing songs to child 0 if Never 1 otherwise (+)
Feel like gave up more than expected because of fatherhood 1 Agree/Strongly Agree,

0 otherwise (+)
Expected warmer feelings from fatherhood 1 Agree/Strongly Agree,

0 otherwise (+)
Feel trapped by fatherhood 1 Agree/Strongly Agree,

0 otherwise (+)
Father spanks child when child misbehaves 0 if No 1 if Yes (-)
Father hits back child when child hits her 0 if No 1 if Yes (-)
Father ignores child when child hits her 0 if No 1 if Yes (-)
Father makes fun of child when child misbehaves 0 if No 1 if Yes (-)
Father yells to child when child misbehaves 0 if No 1 if Yes (-)

parental care qualities we have that:

cov(˜logq
j,1
,Z) = cov(logqj,Z) ,
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Questions used for the second measure of father quality (continuation)

Question Transformation to 0-1
Questions asked when child is 2 years old
Think father must play with child 1 Agree/Strongly Agree,

0 otherwise (+)
Think father have long term effects on child 1 Agree/Strongly Agree,

0 otherwise (+)
Think providing is more important than emotional support 0 Agree/Strongly Agree,

1 otherwise (+)
Think fatherhood is rewarding 1 Agree/Strongly Agree,

0 otherwise (+)

Questions asked when child is 4 years old
Father spanks child when child misbehaves 0 if No 1 if Yes (-)
Father hits back child when child hits her 0 if No 1 if Yes (-)
Father ignores child when child hits her 0 if No 1 if Yes (-)
Father makes fun of child when child misbehaves 0 if No 1 if Yes (-)
Father yells to child when child misbehaves 0 if No 1 if Yes (-)

(+) indicates a weight of +1 and (-) indicates a weight of -1

Table 11: Correlations between measures of parental care

corr(˜logq
m,1
,˜logq

m,2
) corr(˜logq

f,1
,˜logq

f,2
)

0.16 0.15

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

cov(˜logq
j,2
,Z) = αj,2cov(logqj,Z) ,

and hence:

α2,s =
cov(˜logq

j,2
,Z)

cov(˜logq
j,1
,Z)

.

We can use the predicted Arnett score for relative care in wave 2 as the instrument Z.
Substituting population objects for sample analogs in the previous expression we get
the estimates for αm,2,αf,2 shown in Table 12

Since E[˜logq
j,1
] =E[logqj] it follows that:

µj,2 =E[˜logq
j,2
] −αj,2E[˜logq

j,1
] .

Substituting population objects for sample analogs in the previous expression we
get the estimates for µm,2,µf,2 shown in Table 13
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Table 12: Estimates for (αm,2,αf,2)

αm,2 αf,2

5.45 2.10

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Table 13: Estimates for (µm,2,µf,2)

µm,2 µf,2

11.51 17.91

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

J.3.3 Distribution of parental care quality

Given that we have two conditionally independent noisy measures of each parental care
quality and an instrument, the distribution of parental care quality is non-parametrically
identified by Kotlarski’s Theorem under mild technical assumptions. By the same token,
the same is also true for the conditional distribution of parental care quality conditional
on any observable covariate. However, given the available data a fully non-parametric
estimator of the joint distribution of non-parental care with other states is likely to be
very noisy. Therefore, I assume that the distribution of parental care quality j for j=m,f
is given by:

logqj = logqj,e+νj,q ,

where
logqj,e = X ′

j,qβj,q .

with: (
νm

νf

)
∼ N

(
σ2ν,m ρν,m,fσν,mσν,f

ρν,m,fσν,mσν,f σ2ν,f

)

And νj assumed to be independent of Xj,q for j=m,f. Note that we can write:

˜logq
j,1

= X ′
j,qβj,q+νj,q+ ϵ

j,1 ,

˜logq
j,2

−µj,2

αj,2
= X ′

j,qβj,q+νj,q+
ϵj,2

αj,2
.

Under the assumption that the measurement error ϵj,2 is independent of Xj,q, we can

identify βj,q from the best linear predictor of
˜logq

j,2
−µj,2

αj,2
on Xj,q (the same applies to the

best linear predictor of ˜logq
j,1

. The next table presents estimates of βj,q for j=m,f for
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Table 14: Observable predictors of parenting quality

Variable logqm logqf

Own wage 0.1 0.01
(0.01) (0.09)

Relative care Ârnett2 0.17 0.24
(0.02) (0.14)

High School 0.18 0.27
(0.02) (0.15)

College 0.31 0.50
(0.03) (0.18)

Post Grad 0.27 0.34
(0.03) (0.19)

Urban, inside UC -0.02 -0.15
(0.02) (0.11)

Rural -0.01 -0.01
(0.02) (0.11)

Midwest 0.00 -0.14
(0.02) (0.13)

South -0.05 -0.26
(0.02) (0.13)

West 0.08 -0.16
(0.02) (0.14)

Constant -0.41 -0.18
(0.04) (0.29)

NOTE: SE in parenthesis. Own wage refers to logwm in the case of mothers and logwf in the case of
fathers.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Two Parent Families and for j =m for Single Mothers obtained from a regression of
˜logq

j,2
−µj,2

αj,2
on Xj,q

Note that the variance of νj,q is identified from:

Var(νm,q) = cov(˜logqm,1−X
′
m,qβm,q,

˜logqm,2−µm,2
αm,q

) ,

and the covariance of νm,q,νf,q is identified from:

cov(
˜logq

m,2
−µm,2

αm,2
−X ′

m,qβm,q,
˜logq

f,2
−µf,2

αf,2
−X ′

f,qβf,q) .

We can estimate σ2j,q,ρν,m,f by substituting population objects by sample analogs in the
previous expressions. Results are shown in Table 15 For comparison, I show in Table 16
statistics of the distribution of the observable part of parental care

86



Table 15: Parameter estimates for the joint distribution of parental care unobservables

σ2ν,m σ2ν,f ρν,m,f

0.04 0.18 0.74
(0.01) (0.2) (0.56)

NOTE: Bootstrap SE in parentheses
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Table 16: Statistics of the joint distribution of logqm,e, logqf,e

Var(logqm,e) Var(logqf,e) corr(logqm,e, logqf,e)
0.03 0.06 0.68

NOTE: corr refers to the correlation coefficient.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

In order to get estimates of the variance of skill shocks later on, we are going to need
estimates of the variance of the measurement error of the parental quality measures. In
order to identify those, note that

Var(logqj) = cov(
˜logq

j,2
−µj,2

αj,2
,˜logq

j,1
) ,

and

Var(ϵj,1) = Var(˜logq
j,1
)−Var(logqj)

Var(
ϵj,2

αj,2
) = Var(

˜logq
j,2

−µj,2

αj,2
)−Var(logqj) .

Substituting these expressions by sample analogues yields the following estimates: It is

Table 17: Measurement error variances of parental quality measures

Var(ϵm,1) Var( ϵ
m,2

αm,2 ) Var(ϵj,1) Var( ϵ
f,2

αf,2
)

0.90 0.18 0.97 1.32

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

also informative to estimate the signal-to-noise ratios:

J.4 Cognitive skills of children

J.4.1 Measures of cognitive skills

A key feature of ECLS-B is that it contains developmentally-appropriate measures of
cognitive development at each wave. The measures of cognitive development that I
use are the Motor and Mental Scores at 9 months and 2 years old, and the Mathematics
and Reading scores at ages 4 and 5 years old.
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Table 18: Signal-to-noise ratios for parental qualities

sm,1 sm,2 sf,1 sf,2

0.08 0.30 0.17 0.13

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

J.4.2 Identification of the measurement system of cognitive skills

Remember the measurement system for cognitive skills at time t:

˜logθ
s

t = µ
s
θ,t+α

s
θ,t logθt+ ϵsθ,t .

Because cognitive skills are latent, their scale and location are not identified. Hence, I
normalize

µ1θ,t = 0

α1θ,t = 1

for all t. I choose this first "normalized" measures to be the mental scale score at times
t= 1,2 and the math score at t= 3,4:

Identification of the measurement parameters for cognitive skills follows similar
steps to the identification of the measurement parameters for latent parenting quality.
That is, {α2θ,t}

4
t=1 are identified from:

α2θ,t =
cov(˜logθ

2

t ,Zt)

cov(˜logθ
1

t ,Zt)
,

where Zt is again an instrument. In order to avoid a weak-instrument problem, it makes

sense to let Zt be the same measure as ˜logθ
1

t in a period different from t. That is, I
choose Z1 to be the mental scale score at time 2, I choose Z2 to be the mental scale score
at time 1, Z3 to be the mathematics score at time 4. and Z4 to be the math scale score
at time 3. Substituting the population covariances by its sample analogues yields the
following estimates for α2θ,t: Once the α2θ,t are identified for each t, we can compute the

Table 19: Estimates for the loading of the second measure of cognitive skills

α2θ,1 α2θ,2 α2θ,3 α2θ,4
0.78 0.74 0.89 0.95

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

variance of latent skill at each t from:

Var(logθt) =
cov(˜logθ

1

t ,cov(
˜logθ

2

t)

α2θ,t
,
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and the variance of measurement error for the first measure at each t as:

Var(ϵ1θ,t) = Var(
˜logθ

1

t)−Var(logθt) = 1−Var(logθt) ,

where the second equality follows from the fact that ˜logθ
1

t is standardized, and hence
has a variance of 1. Substituting these expressions by their sample analogues yields the
following estimates:

Table 20: Estimates for the Variance of logθt

Var(logθ1) Var(logθ2) Var(logθ3) Var(logθ4)
0.90 0.63 0.90 0.86

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Table 21: Estimates for the Variance of ϵ1θ,t

Var(ϵ1θ,1) Var(ϵ1θ,2) Var(ϵ1θ,3) Var(ϵ1θ,4)

0.1 0.37 0.10 0.14

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Given these estimates for the variance of the measurement error and latent skills in
each period, we can compute the signal-to-noise ratios for each age as:

sθt =
Var(logθt)

Var(logθt)+Var(ϵ1θ,t)
.

These signal-to-noise ratios are very high, especially for early ages (see Cunha, Heck-

Table 22: Estimates for the signal-to-noise ratios for the first measure in each wave

sθ1 sθ2 sθ3 sθ4
0.87 0.61 0.88 0.86

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

man and Schennach (2010)). This speaks to the extraordinary quality of the ECLS-B
data.

J.4.3 Initial distribution of cognitive skills

In principle, it makes sense to allow initial skills to depend on family characteristics,

that is (a1,H). However, when I estimate a linear regression of ˜logθ
1

1 on a1 and H
(using instruments in order to correct for measurement error in initial assets and some
components of H), I get that no coefficient is statistically significant, and that all the
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p-values are above 0.5. Note that this is not because of skills being very imprecisely
measured themselves, given that the estimated signal-to-noise ratio in the first wave is
very high, and given that if I include birthweight in the same regression its estimated
coefficient is statistically very significant. Note that Moschini (2023) also finds that
initial child skills are not very correlated with family characteristics.

Because of this, I assume that initial skills are independent of (a1,H) and normally
distributed. The only parameter of the distribution of skills to be estimated is their
variance (because the location is normalized to 0), which is estimated to be 0.87 (see the
previous discussion on estimating the measurement system for skills).

J.5 Production function of skills, Arnett location shifter, and relative
care quality growth

Substituting the relationship between the predicted Arnett score and latent quality of
non-parental care in the production function for skills we get:

logθt+1 = logAt+γθ,t logθt+γm,t
τmt
T

logqm+

γ
j
f,t

τft
T

logqf+γp,t
τp

T

̂ARNETT
p

t −µ
ARNETT
t

αARNETTt

+γr,t
τr

T

̂ARNETT
r

t−µ
ARNETT
t

αARNETTt

+ηt+1 .

This can be re-arranged as:

logθt+1 = logAt+γθ,t logθt+γm,t
τmt
T

logqm+γjf,t
τft
T

logqf+

γp,t

αARNETTt

τp

T
̂ARNETT

p

t +
γr,t

αARNETTt

τr

T
̂ARNETT

r

t−
γp,t

αARNETTt

τ
p
t

T
µARNETTt −

γr,t

αARNETTt

τr

T
µARNETTt +ηt+1 .

Note that the presence of ηt+1 does not cause an endogeneity issue here. The reason
is that because skills are log-additive in the value function (see Appendix B), all the
household decisions, and in particular childcare time and paid childcare quality, are
independent of ηt+1. Note the previous equation cannot be used directly to identify
parameters because logθt, logθt+1, logqm, logqf are measured with error. However, we
have at least two noisy measures of each of those latent factors for each period. Given
that αARNETTt is identified, logAt , γj,t for j= θ,m,f,p,r, and µARNETTt are identified from
the following moment conditions30:

E

[
Z( ˜logθt+1

1
− logAt+γθ,t logθt+γm,t

τmt
T

˜logq
m,2

−µm,2

αm,2
+γjf,t

τft
T

˜logq
f,2

−µf,2

αf,2
+

γp,t

αARNETTt

τp

T
̂ARNETT

p

t +
γr,t

αARNETTt

τr

T
̂ARNETT

r

t−
γp,t

αARNETTt

τ
p
t

T
µARNETTt −

γr,t

αARNETTt

τr

T
µARNETTt )

]
= 0 ,

30To be more precise, the only parameters whose identification requires knowledge of αARNETT
t are

γp,t,γr,t. µARNETT
t is identified from dividing the coefficient of τr

t

T
by the coefficient of τr

T
̂ARNETT

r

t
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with

Z= (1, ˜logθt+1
2
,
τmt
T

˜logq
m,1
,
τft
T
˜logq

f,1
,
τp

T
̂ARNETT

p

t ,
τr

T
̂ARNETT

r

t,
τ
p
t

T
,
τrt
T
) ′ .

Note that I am using
˜logq

j,2
−µj,2

αj,2
in the estimation equation instead of ˜logq

j,1
because

˜logq
j,2

−µj,2

αj,2
has more variation.

The only non-standard part of this identification result is the fact that µARNETTt is
identified jointly with the Production Function parameters and using only one measure
of non-parental care quality. Note that because µm1 and µf1 are normalized to 0, µARNETTt

measures the extent to which the ARNETT score overstates quality as compared to the
measures of parental care. To see why, suppose that αARNETTt = 1, γm,t = γr,t = 1 there is
no measurement error, and both the ARNETT score and the measure of parental care
are standardized, so their mean is 0 by construction. Then

E[logqm] −E[logqrt] =E[
˜logq

m,2
−µm,2

αm,2
] − (E[ARNETTt] −µ

r) =

E[˜logq
m,1

] − (E[ARNETTt] −µ
r) = µr

Hence, allocates one hour of care from a mother of average quality to a relative of
average quality the associated change in skills tomorrow is given by:

−
1

T
µARNETTt .

Note that by the previous discussion, µARNETTt is related to the changes in skills associ-
ated to changes in the time children spend in different types of care. Hence, if one wants
to analyze the effects on the skills of children of a policy that changes the allocation of
time to each childcare arrangement, it is important to estimate µARNETTt . Setting µARNETTt

to some value as opposed to estimating it is equivalent to taking a stand on the relative
quality of different childcare arrangements.

As noted before, ˜logq
m,1

and ˜logq
f,1

are constructed using the same questions.
Hence, to the extent that the way the questions used to construct those measures do
not map to different levels of quality for mothers and fathers, it makes sense to make
the normalization

γm,t = γf,t .

By the same token, it makes sense to normalize:

γr,t = γp,t .

The estimation equation then simplifies to:

˜logθ
1

t+1 = logAt+γθ,t˜logθ
1

t +γpar,t(
τmt
T

˜logq
m,2

−µm,2

αm,2
+
τft
T

˜logq
f,2

−µf,2

αf,2
)+

γnonpar,t

αARNETTt

(
τp

T
̂ARNETT

p

t +
τr

T
̂ARNETT

r

t)−
γnonpar,t

αARNETTt

τrt+ τ
p
t

T
µARNETTt +

ηt+1+ ϵ
1
θ,t+1+γθ,tϵ

1
θ,t−γpar,t

(
τmt
T

ϵm,2

αm,2
+
τft
T

ϵf,2

αf,2

)
,
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where ϵm,t,ϵf,t are measurement errors in maternal and paternal quality respectively.
The ECLS-B did not perform a direct observation of non-parental childcare arrange-

ments in the first wave, which means that the Arnett score is not available in the first
wave for either relative or paid childcare providers. Under the assumption that the
change in relative care quality between t= 1 and t= 2 is the same across families, we
can write for families that use no paid care at t= 1:

˜logθ
1

2 = logA1+γθ,1˜logθ
1

1+γpar,1

τmt
T

˜logq
m,2

−µm,2

αm,2
+
τft
T

˜logq
f,2

−µf,2

αf,2


+
γnonpar,1

αARNETT2

τr1
T

̂ARNETT
r

2−
γnonpar,1

αARNETT2

τr1
T
(µARNETT2 +αARNETT2 g

q,r
1 )+

η2+ ϵ
1
θ,2+γθ,1ϵ

1
θ,1+γpar,1

(τm1
T

ϵm,2

αm,2
+
τf1
T

ϵf,2

αf,2
) .

Note that because µARNETT2 is identified, and using similar arguments to the ones before,
g
q,r
1 is identified. Moreover, note that despite the fact that we are conditioning on
τp = 0 there is no selection bias, because the only unobservables that show up in the
previous equation are measurement errors and the idiosyncratic skill shock, which
is independent of childcare decisions because of the log-additivity of skills on the
value function that was proven in Appendix B. Note that this wouldn’t be the case
if we let τp1 > 0, because then we would have an unobservable factor problem, where
the unobservable production factor that would be given by the parental investment
composite τ

p
1

T
logqp1 (if τp1 = 0 that factor is 0).

Table 23: Estimates of PF of skills

Parameter t= 1 t= 2 t= 3

logAt 0.08 -0.12 0.01
(0.02) (0.04) (0.3)

γθ,t 0.30 0.31 0.56
(0.03) (0.07) (7.38)

γpar 0.73 1.10 1.38
(0.34) (0.39) (42.43)

γnonpar 0.34 0.82 0.08
(0.29) (0.37) (1.1)

N 1800 1300 450

NOTE: Two-step estimates of Skill Production Function Parameters. In the first step the loadings of the
Arnett score are calculated. In the second step γnonpar is calculated by multiplying the 2SLS-estimated
coefficient of the non-parental time investment composite by the loading of the Arnett score at 2. The rest
of the structural parameters are estimated by the 2SLS-estimated coefficients. The estimation equation is
given above. Bootstrap SE in parentheses. N refers to the number of observations used in 2SLS stage
rounded to the nearest 50 to comply with ECLS-B rules.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.
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Table 24: Estimates of Arnett measurement system additive shifter and the growth rate of relative care
quality between t= 1 and t= 2

g
q,r
1 µARNETT2 µARNETT3

1.45 -0.43 -1.17
(11.86) (0.59) (4.52)

NOTE: Bootstrap SE in parentheses.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Finally, we need to identify and estimate the variance of the skill shocks ηt+1, which
matters for making predictions on the distribution of skills in different counterfactual
scenarios (although it does not matter for investment behaviour per-se, because of the
log-additivity of skills in the value function).

Remember that the residual of the estimation equation is given by:

residualt = ˜logθ
1

t+1− logAt−γθ,t˜logθ
1

t −γpar,t(
τmt
T

˜logq
m
−
τft
T
˜logq

f
)

−
γnonpar,t

αARNETTt

(
τp

T
̂ARNETT

p

t +
τr

T
̂ARNETT

r

t)−
γnonpar,t

αARNETTt

τrt+ τ
p
t

T
µARNETTt

= ηt+1+ ϵ
1
θ,t+1+γθ,tϵ

1
θ,t−γpar,t(

τmt
T

ϵm,2

αm,2
+
τft
T

ϵf,2

αf,2
) .

Taking the expectation of the square of the estimation residual we get:

E[residual2t ] = σ
2
η,t+Var(ϵ

1
θ,t+1)+γ

2
θ,tVar(ϵθ,t)+

γ2par,t

(
E

[(
τmt
T

)2]
Var(

ϵm,2

αm,2
)+E

[(
τft
T

)2]
Var(

ϵf,2

αf,2
)

)
.

Substituting the population objects in this expression by sample counterparts we get:

Table 25: Estimates of the variance of the skill shocks in each period

σ2η,2 σ2η,3 σ2η,4
0.40 0.55 0.46
0.05 0.05 0.17

NOTE: Bootstrap SE in parentheses.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.
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K Identification and estimation of the TFP of quality pro-
duction in centers and homes

TFP in the production function of quality of childcare in Center-Based Providers and
Home-Based care providers can be identified from two sources. The first source of
identification comes from the fact that once the extent to which the standardized Arnett
score overstates or understates the quality of non-parental care (that is, µAR), and
once αE is known, once can identify the TFP of quality production by comparing the
Arnett score observed in paid childcare providers and their inputs of production. More
formally, remember from sub-Appendix J.1.1 the following relation:

Arnetti,t = µ
Arnett
t +αArnettt

(
logAHBt + 1(Di,t = CB)(logACBt − logAHBt

)
+

αArnettt

(
αE,t log

(
E

k

)
+(1−αE,t) log

(
C

k

))
+ ϵArnettt .

Because αARNETTt from Appendix J.1.1 and µARNETTt is identified from J.5, logAHBt is
identified from the constant of a regression of the Arnett score on the imput composite
term and a dummy for center-based care, and logACBt is identified from the constant
of the constant and the coefficient of the dummy for center-based care in the same
regression.

The other source of identification comes from comparing the quality of care pur-
chased by families and the price they pay for it. If families are paying lower prices for
higher quality, that is indicative of high efficiency in the production of quality. To be
more precise, note that in an interior solution for relative care and paid care, in which
the quality of paid care purchased is above the minimum level of quality at which
the mandatory minimum staff-to-child ratio binds we have the following relationship
between quality purchased and the quality of relative care available:

logqpt = 1+
γr,t

γp,t
logqrt .

Note that logqrt is observed because ̂ARNETT2, ̂ARNETT3 are observed and µARNETTt ,αARNETTt

for t= 2,3 and gr,q1 are identified. Moreover, the price of paid care paid by families is
observed up to classical measurement error:

P̃i,t = P(q
P
i,t)+ ϵ

P,q
i,t .

From Lemma 3, we know that the price paid by families whose paid childcare providers’
staff-to-child ratios are above the mandated minimum ones is given by:

P(qPi,t) =

wE( αE
1−αE

wC

wE

)1−αjE
+wC

(
1−αjE
αE

wE

wC

)αE 1
A
qPi,t .

The fact that ϵP,qi,t is classical and mean zero implies :

E[P̃i,t|
C

h
> Rl,0 < τ

r
t < T

r
] =E

wE( αE
1−αE

wC
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.

94



And note that everything but A is a parameter that was identified before or data (given
that qPi,t is known for each family that buys quality high enough with interior relative
care as argued before)

The following table presents estimates of logACBt and logAHBt coming from those
two sources:

Table 26: Estimates of quality production TFP

Variable Prices Inputs-outputs
logACB1 1.68 -

(11.70) -
logAHB1 - -

(-) (-)
logACB2 3.85 3.29

(2.16) (2.14)
logAHB2 3.37 2.80

(2.17) (2.17)
logACB3 7.1 7.14

(9.98) (853.10)
logAHB3 6.83 6.88

(10.33) (852.98)

Table 27: NOTE: Bootstrap SE in parentheses.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.
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L Identification of preference parameters

In this Appendix, I present identification proofs for the preference parameters in the
model. These preference parameters govern the taste for parental leisure, parental time
with the child, skills of the child, and continuation assets ((δml ,δ

f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1,δa)),

as well as the distribution of fixed utility costs of sending the child to Center-Based and
Home-Based care at each age ({λCB,t,λHB,t}3t=1).

Before stating the identification result and discussing the proof, we should intro-
duce some notation and discuss some features of the data. Define the skill gain from
reallocating 1 hour of care from childcare arrangement j ′ to childcare arrangement j as:

∆
j,j ′

θ,i,t =
1

T

(
γj logqji−γj ′ logqj

′

i,t

)
.

Because logqm and logqf are measured with mean-independent error, 0-mean error,
∆
j,j ′

θ,i,t is measured with mean-independent error, 0-mean error for j = m,f and j ′ =

m,f,r,p. That is:

∆̃
j,j ′

θ,i,t = ∆
j,j ′

θ,i,t+
1

T
γj,tϵ

j
i,t := ∆

j,j ′

θ,i,t+ ϵ
∆θj,j ′
i,t for j=m,f and j ′ = r,p ,

and

∆̃
j,j ′

θ = ∆j,j
′

θ +
1

T
γj,tϵ

j−
1

T
γj ′,tϵ

j ′ := ∆j,j
′

θ,i,t+ ϵ
∆θj,j ′
i,t for j, j ′ =m,f and j , j ′ ,

and note that I am omitting the superindex denoting the measure of parental care for
convenience (for each of the two measures of parental care the previous equations still
hold).

Assets at are imputed (see section G for details), so they are also measured with
error, that is:

ãi,t = ai,t+ ϵ
a
i,t .

I assume here that the imputation error ϵai,t is independent of all the household choices
and states31.

ECLS-B asks the parent respondent for each age the child about the price of the
main non-parental childcare arrangement. I assume that the answer to this question is
a measurement error-ridden measure of the price of paid care, that is:

P̃it = P
Dit(qPi,t)+ ϵ

P
i,t ,

where Di,t = CB,HB is the choice of paid care provider, qPi,t is the quality of paid care
chosen by family i at age t, and ϵPi,t is measurement error in the price of paid care
reported by the family, which I assume has mean zero, and is mean independent of all
of the choices and states of the family.

c̃i,t =w
m
i n

m
i,t+w

f
in
f
i,t+ ãi,t(1+ r)− ãi,t− P̃i,tτ

p
t .

31This is indeed an assumption because the imputation procedure only ensures that measurement
error in assets is uncorrelated with imputed assets. The results presented in this section go through
under mean independence, but other results (such as the identification of the initial distribution of states)
require full independence
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Hence, we can write the noisy measure of consumption as:

c̃i,t = ci,t+ ϵ
c
i,t ,

where
ϵci,t = (1+ r)ϵai,t− ϵ

a
i,t+1− τ

P
i,tϵ

P
i,t .

Because ϵai,t,ϵ
a
i,t+1,ϵ

P
i,t are mean zero and mean independent of all the choices and states

of the household, so is ϵci,t.
The following proposition establishes sufficient data requirements for the identifica-

tion of (δml ,δ
f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1,δa)

Proposition 3. Suppose that the following conditional distributions are observed:

• The distribution of (c̃i,t,w
j
i, l
j
i,t) given nji,t > 0 for j=,m,f for some t

• The distribution of (wji, l
j
i,t,∆

p,r, P̃i,t) given 0 < τri,t < T
r
i , τ

p
i,t > 0, and nji,t > 0 for some

j=m,f for t= 2,3

• The distribution of τji,t, l
j
i,t,∆

j,r
θ,i,t given 0 < τri,t < T

r
i for j=m,f and for t= 1,2,3

• The distribution (c̃i,1, c̃i,3, ãi,4)

Additionally, assume that the measurement error in assets and the price of care ϵai,t and ϵPi,t are
independent of all the choices and states, are independent of their own lags and leads, and ϵai,t is
independent of ϵPi,t ′ for all t,t ′.

Moreover, suppose that the following conditions hold:

• E[c̃i,t|n
j
i,t > 0] , 0 for j=m,f for some t

• E[wjil
j
i,t∆

p,r
θ,i,t|0 < τ

r
i,t < T

r
i ,τ

p
i,t > 0,n

j
i,t > 0] , 0 for j=m,f and for some t= 2,3

• E[c̃i,1c̃i,3] , 0

Then (δml ,δ
f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1,δa) are identified.
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Proof. Remember the asset-conditional Lagrangian of the Two-Parent Household:

∂L

∂c
=
1

c
− λBC = 0

∂L

∂lm
=
δml
lm

− λm = 0

∂L

∂nm
=−λm+ λBCwm+µmn = 0

∂L

∂lf
=
δfl
lf

− λf = 0

∂L

∂nf
=−λf+ λBCwf+µfn = 0

∂L

∂τm
=
δmτ
τm

+
Ψm

T
logqm− λSC− λm = 0

∂L

∂τf
=
δfτ
τf

+
Ψf

T
logqf− λSC− λf = 0

∂L

∂τr
=
Ψr

T
logqr− λSC+µrτ−ω

r = 0

∂L

∂τp
=
Ψp

T
logqp− λSC− λBCPP(qp)+µpτ = 0

∂L

∂qp
= Ψp

τp

T

1

qp
− λBC

dPp

dqp
(qp)τP = 0

and the FOC for continuation assets:
1

c
=
δaβ

a4

The proof uses these FOCs to identify the parameters of interest, given the appropriate
conditional distributions.

1. Identification of δml ,δ
f
l

Combining the FOCs for c, nm, and lm we get:

c=
1

δml
wmlm

This implies the following relationship in terms of data objects and measurement
error:

c̃i,t =
1

δml
wmi l

m
i,t+ ϵ

c
i,t

Taking expectations on both sides conditional on nmi,t > 0 we get:

E[c̃i,t|n
m
i,t > 0] =

1

δml
E[wmi l

m
i,t|n

m
i,t > 0]

Re-arranging we get:

δml =
E[wmi l

m
i,t|n

m
i,t > 0]

E[c̃i,t|n
m
i,t > 0]

.

A similar argument using the distribution of (c̃i,t,wfi,t, l
f
i,t) establishes the identifi-

cation of δfl .
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2. Identification of (δθ,4,δθ,4)

In an interior solution for relative care (0 < τr < T r) the Lagrange multipliers on
τr ⩾ 0 and τrt ⩽ T

r are 0. Hence, from the FOC for τr we get that, in an interior
solution for relative care

Ψrt
T

logqrt =
βΓθt+1γr,t

T
logqrt = λ

SC
t .

Combining this with the FOC for paid care τP, the FOC for consumption, the
FOC for maternal labor supply, and the FOC for leisure, we get that in an interior
solution for paid care (so µpτ = 0) the following relationship has to hold:

βΓθt+1∆
p,r
t = δml

Pt(q
P
t )

wmlmt
,

where I’m using the definition of ∆p,rt

∆
p,r
t =

1

T
(γp,t logqpt −γr,t logqrt) ,

and the definition of Ψpt , and I am omitting the type of care superscript (D) for
convenience.

Ψ
p
t = βΓ

θ
t+1γp,t .

Re-arranging, we get:
βΓθt+1w

mlmt ∆
p,r
t = PPt (q

P
t ) .

This implies the following equation in terms of data objects and measurement
error

P̃i,t =
βΓθt+1
δml

∆
p,r
i,t + ϵ

P
i,t .

Taking conditional expectations and re-arranging we get:

βΓθt+1
δml

=
E[P̃i,t|0 < τ

r
i,t < T

r
i ,τ

p
i,t > 0,n

m
i,t > 0]

E[wmi l
m
i,t∆

p,r
i,t |0 < τ

r
i,t < T

r
i ,τ

p
i,t > 0,n

m
i,t > 0]

.

Because δml is identified from the previous step and β is treated as known, Γθ4
and Γθ3 are identified from the distribution of (wmi , l

m
i,t,∆

p,r, P̃i,t) given 0 < τri,t < T
r
i ,

τ
p
i,t > 0, and nmi,t > 0 for t= 2,3.

Since Γθ4 = δθ,4, it follows that δθ,4 is identified. Moreover, since Γθ3 = βγθ,3Γ
θ
4 + δθ,3,

β is treated as known, γθ,3 is identified (see Appendix J.5) and Γθ3 , Γ
θ
4 are identified,

it follows that δθ,3 is identified.

A similar argument applies if the distribution of (wfi , l
f
i,t,∆

p,r, P̃i,t) given 0 < τri,t <
T
r
i , τ

p
i,t > 0, and nfi,t > 0 is observed.

3. Identification of δmτ ,δfτ From the FOCs for τm, τr, lm we get that in an interior
solution for relative care the following condition needs to hold:

δmτ
τm

+βΓθt+1∆
m,r
θ =

δml
lm

,
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and note that I am using again the definition of Ψm,Ψr and ∆m,rθ Re-arranging we
get:

δmτ
δml

=
τm

lm
−
βΓθt+1
δml

∆m,rθ τm .

This implies that the following equation in terms of observables and measurement
error holds:

δmτ
δml

=
τmi,t
lmi,t

−
βΓθt+1
δml

∆̃m,rθ,i,tτ
m
i,t+

βΓθt+1
δml

τmi,tϵ
∆θm,r
i,t .

Taking conditional expectations we get:

δmτ
δml

=E[
τmi,t
lmi,t

|0 < τri,t < T
r
i ] −

βΓθt+1
δml

E[∆̃m,rθ,i,tτ
m
i,t|0 < τ

r
i,t < T

r
i ] .

Since δml and Γt+1 are identified for t= 2,3, δmτ is identified from the distribution
of τmi,t, l

m
i,t, ∆̃

m,r
θ,i,t given 0 < τri,t < T

r
i for t = 2,3 A similar argument establishes the

identification of δfτ from the distribution of τfi,t, l
f
i,t, ∆̃

f,r
θ,i,t given 0 < τri,t < T

r
i for

t= 2,3

4. Identification of δθ,2

Note that once δmτ is identified, the equation

δmτ
δml

=E[
τmi,1
lmi,1

|0 < τri,1 < T
r
i ] −

βΓθ2
δml

E[∆̃m,rθ,i,1τ
m
i,1|0 < τ

r
i,1 < T

r
i ] .

can be used to identify Γθ2 . Using the expression for Γθ2 and the fact that β is treated
as known, γθ,1 is identified, and Γθ3 is identified, we can recover δθ,2

5. Identification of δa

From the first order conditions for a4 we get:

1

c
=
βδa

a4
.

Re-arranging:
a4 = βδac3 .

This implies that the following equation in terms of observables and measurement
error holds:

ãi,4 = βδac̃i,3+ ϵ
a
i,4−βδaϵ

c
i,3 .

From the expression for the measurement error in consumption and the assump-
tion that measurement error in assets and childcare prices is independent across
periods we get that the following conditional moment restriction has to hold:

E[c̃i,1(ãi,4−βδac̃i,3)] = 0 .

This conditional moment restriction identifies βδa if E[c̃i,1c̃i,3] , 0, which holds by
assumption.

Because β is known, δa is identified.
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Some comments are in order. First, note that the identification result only requires
observing wages for parents that are working. Hence, the fact that I am imputing
wages for all parents is immaterial for the identification of the preference parameters
discussed so far. Second, the data requirements in Proposition 3 are sufficient but not
necessary. One can combine optimality conditions in a different way and arrive at
a different set of sufficient data requirements. In fact, (δml ,δ

f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1,δa) are

overidentified. Third, note that the assumptions

E[c̃i,t|n
j
i,t > 0] , 0,E[wjil

j
i,t∆

p,r
θ,i,t|0 < τ

r
i,t < T

r
i ,τ

p
i,t > 0,n

j
i,t > 0] , 0,E[c̃i,1c̃i,3] , 0 ,

are testable. Moreover, the assumptions

E[c̃i,t|n
j
i,t > 0] , 0,E[wjil

j
i,t∆

p,r
θ,i,t|0 < τ

r
i,t < T

r
i ,τ

p
i,t > 0,n

j
i,t > 0] , 0 ,

are always true under the assumption of the model. Under the assumptions of the
model, 0 consumption is never optimal provided wages and/or assets are positive (due
to the Inada condition). For the same reason, 0 leisure is never optimal. Finally, wages
are assumed to be positive and ∆p,rθ,i,t is positive because if there is relative care available
it is not optimal for families to pay for a childcare arrangement of inferior quality (see
First Order Conditions of the asset-conditional problem).

The next proposition provides sufficient conditions for the identification of the paid
care utility cost distribution parameters {λCBt ,λ

HB
t }3t=1. The proposition is written for

Two-Parent families. The case for Single-Mother Households is similar and is omitted
here.

Proposition 4. Suppose that {P(Dt =HB),P(Dt = CB)}
3
t=1 are observed.

Moreover, suppose that the following sets have strictly positive measure

{at,H : ṼDt (at,H)> Ṽ
N
t (at,H)} for D= CB,HB and t= 1,2,3

Then {λCBt ,λ
HB
t }3t=1 are identified.

Proof. First, it is useful to establish that conditional choice probabilities (that is, the
probability of using each type of care at t conditional on the state at t being at,H) for
each type of care are decreasing on the average of their own cost (1/λ) and increasing
on the average utility cost of the other type of childcare. Taking partial derivatives of
the conditional choice probabilities (see expression for conditional choice probabilities
in C) we get that if ṼHB(at,H)⩾ ṼCB(at,H)

∂P(D=N|at,H)

∂λHB
=−(ṼHB− ṼN)e−λCB(Ṽ

CB−ṼN)e−λHB(Ṽ
HB−ṼN) ⩽ 0 ,

∂P(D=N|at,H)

∂λCB
=−(ṼCB− ṼN)e−λCB(Ṽ

CB−ṼN)e−λHB(Ṽ
HB−ṼN) ⩽ 0 ,

with strict inequality if ṼHBt (at,H), Ṽ
CB
t (at,H) > Ṽ

N(at,H). Also, note that the second
inequality follows because by the definition of ṼCBt (at,H), Ṽ

HB
t (at,H) it must always be
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the case that:

VCBt (at,H)⩾ V
N
t (at,H) ,

VHBt (at,H)⩾ V
N
t (at,H) .

Taking partial derivatives to the rest of conditional choice probabilities we get:

∂P(D=HB|at,H)

∂λHB
= e−λHB(Ṽ

HB−ṼN)e−λCB(Ṽ
CB−ṼN)

⩾0︷                                             ︸︸                                             ︷[
(ṼHB− ṼN)−

λCB
λCB+ λHB

(ṼCB− ṼN)
]

+
λCB

λCB+ λHB
e−λHB(Ṽ

HB−ṼCB)
(
1− e−(λCB+λHB)(Ṽ

CB−ṼN)
)[
(ṼHB− ṼCB)+

1

λCB+ λHB

]
⩾ 0

again with strict inequality if ṼHBt (at,H)> Ṽ
N(at,H).

∂P(D=HB|at,H)

∂λCB
=

λHB
λHB+ λCB

(ṼCB− ṼN)e−λHB(Ṽ
HB−ṼN)−λCB(Ṽ

CB−ṼN)

−
λHB

(λCB+ λHB)2
e−λHB(Ṽ

HB−ṼCB)
(
1− e−(λCB+λHB)(Ṽ

CB−ṼHB)
)
⩽ 0 ⇐⇒

(ṼCB− ṼN)(λHB+ λCB)e
−(λCB+λHB)(Ṽ

CB−ṼN) ⩽
(
1− e−(λCB+λHB)(Ṽ

CB−ṼN)
)

which is true by the convexity of e−(ṼCB−ṼN)x

Moreover:

∂P(D= CB|at,H)

∂λCB
=−

∂P(D=HB|at,H)

∂λCB
−
∂P(D=N|at,w

m,qm,qr,T
r
)

∂λCB
⩾ 0

and
∂P(D= CB|at,H)

∂λHB
=−

∂P(D=HB|at,H)

∂λHB
−
∂P(D=N|at,w

m,qm,qr,T
r
)

∂λHB
=

e−λHB(Ṽ
HB−ṼN)e−λCB(Ṽ

CB−ṼN) λCB
λHB+ λCB

(ṼCB− ṼN)

−
λCB

λCB+ λHB
e−λHB(Ṽ

HB−ṼCB)
(
1− e−(λCB+λHB)(Ṽ

CB−ṼN)
)(
1+(ṼHB− ṼCB)

)
⩽ 0

⇐⇒ e−(λCB+λHB)(Ṽ
CB−ṼN)

(
ṼCB− ṼN

)(
λCB+ λHB

)
⩽(

1− e−(λCB+λHB)(Ṽ
CB−ṼN)

)
(1+(λHB+ λCB)(Ṽ

HB− ṼCB))

which again is true by the convexity of e−(ṼCB−ṼHB)x

By symmetry, if ṼCB ⩾ ṼHB, ṼCB is strictly increasing in λCB and weakly decreasing
in λHB.

Note that when taking derivatives, I am leaving the dependence of ṼPt on at,H
implicit to avoid clutter of notation. This establishes that P(Dt = D|at,H)is weakly
increasing in λP and weakly decreasing in λP ′ . Moreover, this monotonicity is strict if
ṼCBt (at,H), Ṽ

HB
t (at,H)> V

N(at,H) The rest of the proof proceeds by backward induction

• Last period (t= 3): Unconditional choice probabilities can be written as:

P(P3 = CB) =

∫
a3,H

P(P3 = CB|at,H)dG3(a3,H) := π
CB
3 (λCB,λHB) ,

P(P3 =HB) =

∫
a3,H

P(P3 =HB|at,H)dG3(a3,H) := π
HB
3 (λHB,λCB) ,
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where we have data objects in the LHS and known functions of λCB3 ,λ
HB
3 in the RHS.

Moreover, note that πP(λCB,λHB) because P(Dt =D|at,H) is strictly increasing in
λPt if ṼP > ṼN, it is always weakly increasing in λP, weakly decreasing in λP ′ , and
the set

{at,H : ṼPt (at,H)> Ṽ
N
t (at,H)} for D= CB,HB and t= 1,2,3

has positive measure.

The fact that the RHS is a known function of λCB3 ,λ
HB
3 follows from the fact that:

– ṼD3 can be computed for D=N,CB,HB because:

* β is treated as known and (δml ,δ
f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1,δa) are identified from

Proposition 3

* Price schedules PPt (q) can be computed from the observed factor prices
wE,wC, the observed staff-to-child ratios, and the technology parameters,
which are identified from Appendices K, I.

– Gt(at,H) is identified (see discussion Section 6.2.2

A simple contradiction argument establishes that λCB3 ,λ
HB
3 are identified from

P(P3 = CB),P(P3 =HB).

Suppose that is not the case. Then, there exist two different pairs (λCB3 ,λ
HB
3 ) and

(λ̃CB3 , λ̃
HB
3 ) that generate the same unconditional choice probabilities. Without loss

of generality, assume λCB3 > λ̃CB3 . Because πCB3 is strictly increasing in λCB3 , it must
be the case that

λ̃HB3 < λHB3 ,

otherwise we would have

πCB3 (λCB3 ,λ
HB
3 )> πCB3 (λ̃CB3 , λ̃

HB
3 ) ,

which is an immediate contradiction. However, because πHB3 (λCB3 ,λ
HB
3 ) is strictly

increasing in λHB3 and weakly decreasing in λCB3 , we must have

πHB3 (λ̃CB3 , λ̃
HB
3 )< πHB3 (λCB3 ,λ

HB
3 ) ,

which is a contradiction. Similar arguments apply if we start by assuming λCB3 <

λ̃CB3 , λHB3 < λ̃HB3 , or λCB3 > λ̃CB3 . This establishes that (λCB3 ,λ
HB
3 ) are identified.

• Induction step: We want to show that if λCBt+1,λ
HB
t+1, then λCBt ,λHBt are identified.

Again, the unconditional choice probabilities can be written as:

P(Dt = CB) =

∫
at,H

P(Dt = CB|at,H)dGt(at,H) := π
CB
t (λCB,λHB) ,

P(Dt =HB) =

∫
at,H

P(Dt =HB|at,H)dGt(at,H) := π
HB
t (λHB,λCB) ,

where we have data objects in the LHS and known functions of λCBt ,λHBt in the
RHS. The fact that the RHS is a known function of λCBt ,λHBt follows from the fact
that:
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– ṼPt can be computed for D=N,CB,HB because:

* β is treated as known and (δml ,δ
f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1,δa) are identified from

Proposition 3

* Price schedules PPt (q) can be computed from the observed factor prices
wE,wC, the observed staff-to-child ratios, and the technology parameters,
which are identified from Appendices K, I.

* From the Induction Hypothesis: λCBt+1,λ
HB
t+1 are known, which matters for

the computation of EV̂t+1(at+1,H,cCBt+1,c
HB
t+1)

– Gt(at,H) is identified (see discussion Section 6.2.2

The contradiction argument goes exactly as before. This establishes the identifica-
tion of {λCBt ,λHBt }3t=1

Some comments are again in order. First, the condition

{at,H : ṼPt (at,H)> Ṽ
N
t (at,H)} for D= CB,HB and t= 1,2,3 ,

is testable. That is because if we observe some families using Center-Based care, and
some other families using Home-Based care at each age, it must be true that the no-zero
measure condition above is satisfied.

Second, note that the identification result assumes that unconditional choice proba-
bilities are observed at each age, instead of conditional choice probabilities. I chose to
write the identification result in terms of unconditional choice probabilities for prac-
tical reasons. In principle, one could target P(Dt = D|at,H) in estimation. However,
(at,H) is very high-dimensional, is measured with error, and it’s distribution is endoge-
nous and of unknown functional form for t= 2,3, which complicates in practice using
P(Dt =D|at,H) in estimation.
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M Estimation of Preference Parameters

I estimate preference parameters in three steps. In the first step, I estimate

(δml ,δ
f
l ,δ

m
τ ,δ

f
τ, {δθ,t+1}

3
t=1) .

I translate the joint-restrictions on conditional moments and parameters used in the
proof of Proposition 3 into a Minimum-Distance estimator.

More precisely, ϑ̂ := (δ̂ml , δ̂
f
l , δ̂

m
τ , δ̂

f
τ, {δ̂θ,t}

4
t=2) solves the following minimization prob-

lem:

ϑ̂= argmin
ϑ
ψ(ϑ,πN)

′Wψ(ϑ,πN)

with

πN =



{Ê[wmi l
m
i,t|n

m
i,t > 0]}

3
t=1

{Ê[c̃i,t|n
m
i,t > 0]}

3
t=1

{Ê[wfil
f
i,t|n

f
i,t > 0]}

3
t=1

{Ê[c̃i,t|n
f
i,t > 0]}

3
t=1

{Ê[P̃i,t|0 < τ
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with ψ(ϑ,πN) given by:
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Ê[wm
i l

m
i,t∆

p,r
i,t |0<τ

r
i,t<T

r
i ,τ

p
i,t>0,n

m
i,t>0]

}3t=2

{
βΓθt+1

δfl
−
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where Γθt+1 is given by the expression in B (and note that β is fixed to 0.95 and γθ,t is
estimated on a previous step), and Wn is a diagonal matrix that is not a function of the
data.

In the second step I estimate βδa by running a 2SLS regression of ã4 on c̃3 using c̃1
as an instrument. Note that this estimator is the sample analogue of the expression that
characterizes δa in the proof of Proposition 3.

In the third step, I estimate the parameters of the distribution of fixed utility costs of
paid care {λCBt ,λ

HB
t } using indirect inference. From proposition 4 we know that {λCBt ,λHBt }
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are identified from unconditional choice probabilities. Therefore, the unconditional
choice probabilities {{P(Dt =D)}D=N,CB,HB}

3
t=1 are the first set of targets that I use in the

Indirect Inference step. Because I want to match both the choice probabilities of Two-
Parent families and the choice probabilities of Single-Mother Households, I estimate
{λCBt ,λ

HB
t } separately for Two-Parent families and Single Mothers (that is, I run two

different Indirect Inference estimation procedures).
From 4 it should be noted that identifying {λCBt ,λ

HB
t } from unconditional choice

probabilities requires knowing the joint distribution Gt(at,H) for each t. While this
object is non-parametrically identified, an estimation procedure that leverages this fact
is likely to be very data-intensive given the dimensionality of (at,H) and the fact that
at and some elements of H are measured with error. I deal with this issue by targeting
statistics of the endogenous joint distribution of at and H for t= 2,3. By doing that, I
reduce the risk that the Indirect Inference estimator yields an estimate of {λCBt ,λHBt }3t=1
consistent with the wrong distribution of (at,H) 32. The statistics that I target to deal
with this issue are average assets at each age, the variance of assets at each age, and

the correlation of assets with (wm,wf, {logqr}3t=2,T
r
,˜logq

m,2
,˜logq

f,2
) in the case of Two-

Parent families and (wm, {logqr}3t=2,T
r
,˜logq

m,2
) in the case of Single Mothers. Moreover,

I also target the amount of bunching around the mandatory minimum staff-to-child
ratio at each age in Center-Based providers for Two-Parent families, and the average
hours of paid care at each age for Two-Parent families. These statistics are important.
Bunching is defined as:

Bunching(CBt) =P(RCBl,t −
1

30
<
C

h
< RCBl,t +

1

30
|Dt = CB) .

C
h is reported by the parents in the data, and is calculated in model simulations given
quality decisions and the observed factor prices according to Lemma 1.

Bunching around the ratio is informative of the fraction of children directly affected
by changes in the mandatory minimum staff-to-child ratio, and also of the labor demand
response to changes in mandatory minimum ratios. Moreover, the average hours of
paid care is informative of the importance of the childcare market at each age. In order
to target these statistics, I update the estimates of δθ,t+1 for t = 1,2,3 by re-estimating
them in the indirect inference procedure. To make sure that all the parameters that I am
estimating by Indirect Inference ({λCBt ,λHBt ,δθ,t+1}

3
t=1) are identified, I include

Ê[
τmi,t
lmi,t

|0 < τri,t < T
r
i ] ,

Ê[∆̃m,rθ,i,tτ
m
i,t|0 < τ

r
i,t < T

r
i ] ,

Ê[
τfi,t
lfi,t

|0 < τri,t < T
r
i ] ,

32Note that the identification proof uses the true Gt(at,H) which is non-parametrically identified.
However, the proof does not prevent the existence of different {λ[CB]t,λHB

t }3t=1 rationalizing the observed
choice probabilities for different Gt() for t= 2,3
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and
Ê[∆̃f,rθ,i,tτ

f
i,t|0 < τ

r
i,t < T

r
i ]

as targets (note that these identify {δθ,t+1}
3
t=1 given that δmτ ,δfτ were estimated in the

first step). Note that I am letting λ vary across household structures, but not any of
the other preference parameters. This choice was made to balance two concerns. First,
Single Mothers are different from Two-Parent families as evidenced by the fact that they
make very different choices, and capturing these differences is likely to be important
when predicting the distributional impacts of childcare market policies. However,
because Single Mothers represent only a small fraction of my sample, allowing for total
flexibility in preference parameters is likely to be inefficient, given the small sample
size for Single Mothers.

Below I detail the Indirect Inference procedure for Two-Parent families. The algo-
rithm for Single-Mothers is similar:

1. Read off the data assets, wages, the endowment of relative care, and quality of
relative care, and the observable part of parenting quality, that is:

(a1,w
m,wf,T

r
, logqr, logqm,e, logqf,e) .

See Appendix G for the imputation of assets, F for the imputation of parental
wages, H for the estimation of the relative care endowment for each family, and
J.3 for the construction of the observable part of parental care.

2. Simulate the unobservable part of parental (νmi,j,ν
f
i,j) care quality from its estimated

distribution many times (j = 1, . . . J) for each family i and construct logqmi,j and
logqfi,j according to:

logqmi,j = logqm,ei +νmi,j ,

logqfi,j = logqf,ei +νfi,j .

The resulting simulated dataset:

{{a1,i,w
m
i ,w

f
i ,T

r
i , logqri , logqmi,j, logqfi,j}

N
i=1}

J
j=1 ,

is an approximation to G1(a,H).

3. Build pricing schedules for each family i from information on the state the family
lives in, the observed factor prices in that state wE,wC (remember wE is simply
the average lead-teacher premium in that state), and the observed regulations in
that state.

4. Given ϑIF = {λCBt ,λ
HB
t ,δθ,t+1}

3
t=1, solve and simulate choices for each family, aggre-

gate them, and compute the desired statistics.

5. Compute that weighted square distance:

ψIF,TP(ϑIF) ′WψIF,TP(ϑIF)

where W is a diagonal matrix and ψIF,TP(ϑIF) is the difference between the simu-
lated and the observed targets.
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Table 28: Preference parameter estimates

δml 0.25
δfl 1.37
δmτ 1.80
δfτ 0.052
δa 15.01

NOTE: Minimum distance estimates for preference parameters. "SOURCE" below refers to the data
source used to compute the target statistics.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Estimates from the first and second step are shown in Table 28, and estimates from
the third step are shown in Tables 29 and 30. Tables 31 and 32 shows how the model
fits some important statistics targeted in the Indirect Inference step

Table 29: IF estimates of the distribution of utility costs at each age for Two-Parent families and parental
taste for skills at each age.

Parameter Estimate
λCB,1 31.37
λCB,2 9.11
λCB,3 17.24
λHB,1 17.31
λHB,2 10.60
λHB,3 41.51
δθ,1 1.24
δθ,2 0.09
δθ,3 2.64

NOTE:"SOURCE" below refers to the source of the micro-data used in the indirect inference step. In
particular, the statistics targeted in the Indirect Inference step and the initial distribution of states come
from "SOURCE".The source of the wages of teachers and childcare workers is the BLS, and the source of
regulations is Wheelock College in Boston (see the data section).
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.
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Table 30: IF estimates of the distribution of utility costs at each age for Single Mothers at each age.

Parameter Estimate
λCB,1 3.23
λCB,2 1.08
λCB,3 1.06
λHB,1 1.87
λHB,2 0.34
λHB,3 0.64

NOTE:"SOURCE" below refers to the source of the micro-data used in the indirect inference step. In
particular, the statistics targeted in the Indirect Inference step and the initial distribution of states come
from "SOURCE".The source of the wages of teachers and childcare workers is the BLS, and the source of
regulations is Wheelock College in Boston (see the data section).
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

Table 31: Fit, IF for TP families

Choice Probability Model Data
P(P1 = CB) 0.11 0.08
P(P2 = CB) 0.25 0.16
P(P3 = CB) 0.67 0.57
P(P1 =HB) 0.38 0.17
P(P2 =HB) 0.28 0.18
P(P3 =HB) 0.08 0.08
Bunching(CB1) 15% 11%
Bunching(CB2) 3% 3%
Bunching(CB3) 66% 23%
E[τp1 ] 1389 360
E[τp2 ] 1542 501
E[τp3 ] 2920 895

NOTE: "SOURCE" below refers to the "Data" column.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.
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Table 32: Fit, IF for SM households

Choice Probability Model Data
P(P1 = CB) 0.18 0.15
P(P2 = CB) 0.3 0.24
P(P3 = CB) 0.66 0.35
P(P1 =HB) 0.27 0.19
P(P2 =HB) 0.16 0.15
P(P3 =HB) 0.08 0.08

NOTE: "SOURCE" below refers to the "Data" column.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

N Identification and estimation of labor supply elastici-
ties of Lead Teachers and Childcare Workers

In the model, the labor supply of lead teachers and childcare workers is given by:

LTl = LT l(w
LT
l )ηLT ,

CCWl = CCWl(w
CCW
l )ηCCW .

Note that in the previous equations, there are no unobservable supply shifters, which I
want to allow for in estimation. The labor supply equations including the unobservable
supply shifter are given by:

LTl = LT l(w
LT
l )ηLT exp(ξLTl,t ) ,

CCWl = CCWl(w
CCW
l )ηCCW exp(ξCCWl,t ) .

Taking logs we get

logLTl = logLT +ηLT log(wLTl )+ ξLTl,t ,

logCCWl = logCCW+ηCCW log(wCCWl )+ ξCCWl,t .

Note that a linear regression here is not enough to identify ηLT , ηCCW due to the familiar
simultaneity bias (unobservable supply shifters move the labor supply equation, which
affects the observed equilibrium wage, which makes wages mechanically correlated
with the unobservable supply shifter). Hence, we need an instrument. The instrument
that I use here is fertility lagged two years. Lagged fertility should be a relevant
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instrument to the extent that the number of children born two years ago increases
the demand for childcare services. Moreover, if fertility causes teachers to leave the
labor force, fertility contemporanous fertility should be endogenous. To the extent
that teachers join the labor force again sufficiently fast, lagged fertility shouldn’t be
endogenous. The estimation equations are given by:

log
( LTl,t

Employmentl,t

)
= logLT +ηLT logwLTl,t +X

′
l,tβLT + ξ

LT
l,t ,

log
( CCWl,t

Employmentl,t

)
= logCCW+ηCCW logwCCWl,t +X ′

l,tβCCW + ξCCWl,t .

Note that I am dividing the number of Lead Teachers (Childcare workers) in state l
at time t by total employment, and that the intercepts of these two equations do not
depend on l. Hence, I am only allowing the dependence of LT l,t and CCWl,t on l to
happen through the size of the labor force in state l at time t and Xl,t. Because current
fertility can affect labor supply, and current fertility is correlated with lagged fertility,
I include contemporaneous and lagged one period fertility in Xl,t. The estimates of
ηLT and ηCCW are shown in Table 33. Note that both the estimated elasticity for Lead
Teachers and the elasticity for Child Care Workers fall in the range of elasticities
estimated by Blau (1993) (he estimates elasticities in the range of 1.15-1.94).

Table 33: Elasticities of labor supply for Lead Teachers and Childcare Workers

ηLT ηCCW

1.33 1.58
(1.89) (2.65)

SE in parenthesis

Note that in order to solve the model and perform counterfactuals it is not the shifter
of the extensive margin of labor supply for Lead Teachers and childcare workers that
matters, but rather the products LTHLT and CCWHCCW , that is, the shifters of factor
supplies. In order to estimate the shifters of factor supplies, one could in principle use
estimates for the shifters of the extensive margin of labor supply of Lead Teachers and
Childcare workers and combine it with evidence on hours worked by Lead Teachers
and Childcare workers. However, there is no guarantee that once the model is solved
using those shifters, the wages of childcare workers and lead teachers produced by
the model are going to be close to those in the data. Because of that, I use a different
strategy here. Note that in equilibrium the supply and demand of factors need to
equalize, that is:

ED(wE,wC) = LT(wE+wC)ηLT expξ
LT
l,t ,

and

CD(wE,wC) = LTHLT (w
E+wC)ηLT expξ

LT
l,t +CCW(wC)ηCCW expξ

CCW
l,t .
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Using the previous equation this simplifies to:

CD(wE,wC)−ED(wE,wC) = CCWHCCW(wC)ηCCW expξ
CCW
l,t .

Now, note that given that Household-side and childcare-provider side parameters are
identified, factor demands at the observed prices can be calculated using the algorithm
in Appendix E. Taking logs, taking expectations, and noting that ξLTl,t and ξCCWl,t have
mean zero we get:

log
(
HLTLT

)
=E[logED(wE,wC)] −ηLTE[log(wE+wC)] .

log
(
HCCWCCW

)
=E

[
log
(
ED(wE,wC)−CD(wE,wC)

)]
−ηCCWE[logwC] .

Substituting population objects by its sample analogs we get the estimates in Table 34

Table 34: Estimates of factor supply shifters

HLTLT HCCWCCW

61.37 26,63

NOTE: In order to estimate HCCWCCW, observations for which C(wE,wC)⩽ E(wE,wC) at the observed
factor prices are excluded.
NOTE:"SOURCE" below refers to the source of the micro-data used to calculate model-implied factor
demands at the observed wages. In particular, the initial distribution of states comes from "SOURCE".The
source of the wages of teachers and childcare workers is the BLS, and the source of regulations is
Wheelock College in Boston (see the data section).
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood
Longitudinal Study, Birth Cohort (ECLS-B) of children born in the calendar year 2001.

O Additional results: Teachers’ wages

This Appendix examines further the effects of mandatory minimum ratios on the wages
of lead teachers and childcare workers Because mandatory minimum ratios are usually
expressed as 1 adult per n children, I consider all the combination of ratios in the
following list:

R1 ∈
{1
8
,
1

7
. . . ,

1

3

}
R2 ∈

{ 1
12
,
1

11
. . . ,

1

5

}
R3 ∈

{ 1
14
,
1

13
. . . ,

1

7

}
For each element in that list, I solve for the equilibrium wages of Lead Teachers and
Childcare Workers in each region (remember that all the states within a region are
identical, except for the regulations). Table 35 shows the wage-maximizing ratio
combination in each region for lead teachers and childcare workers, and 36 shows
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Wage maximizing staff-to-child ratios for lead teachers and childcare workers by
region

18 months 3 years old 4 years old
Lead Teachers, South 5 5 7
Lead teachers, West 5 5 7
Lead Teachers, Northeast 4 5 7
Lead Teachers, Midwest 4 5 7
Childcare Workers, South 5 5 7
Childcare Workers, West 6 5 7
Childcare Workers, Northeast 4 5 7
Childcare Workers, Midwest 5 5 7

Table 35: Combination of child-to-staff ratios at each age that maximize wages of teachers and childcare
workers in each region. I am reporting children-to-staff ratio instead of staff-to-child ratio for clarity.

Wage minimizing staff-to-child ratios for lead teachers and childcare workers by
region

18 months 3 years old 4 years old
Lead Teachers, South 5 12 14
Lead teachers, West 3 12 13
Lead Teachers, Northeast 8 12 13
Lead Teachers, Midwest 8 12 13
Childcare Workers, South 7 12 10
Childcare Workers, West 3 12 11
Childcare Workers, Northeast 3 12 11
Childcare Workers, Midwest 8 12 12

Table 36: Combination of child-to-staff ratios at each age that minimize wages of teachers and childcare
workers in each region. I am reporting children-to-staff ratio instead of staff-to-child ratio for clarity.

wage-minimizing ratios. Again, for ease of interpretation I present children-to-staff
ratios, as opposed to staff-to-child ratios.

In conjunction, Tables 35 and 36 show that a regulator seeking to increase the
wages of teachers using mandatory-minimum ratios will set stringent regulations
(few children per teacher allowed). If the regulator wants to decrease the wages of
teachers (for instance, to keep the cost of childcare low), it will choose less stringent
ratios. Moreover, note that maximizing wages does not amount to setting the highest
possible staff-to-child ratio, nor minimizing ratios amounts to setting the lowest possible
ratio. This is because when increasing regulations there are forces that push wages up,
and forces that push wages down, as discussed throughout the paper. Finally, Table
37 shows the lowest and the highest wage for lead teachers and childcare workers
attainable in each region by manipulating regulations. It shows that regulations are
able to affect wages substantially, emphasizing that accounting for general equilibrium
effects when examining changes in regulations is important.
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Wage range induced by regulations

Wage range
Lead Teachers, South 9.97-10.47
Lead teachers, West 8.83-9.27
Lead Teachers, Northeast 9.80-10.16
Lead Teachers, Midwest 9.40-9.80
Childcare Workers, South 8.28-8.81
Childcare Workers, West 7.31-7.87
Childcare Workers, Northeast 8.14-8.57
Childcare Workers, Midwest 7.78-8.25

Table 37: Difference between the lowest and highest possible wages achievable by changing regulations.
Wages are reported in 2001 dollars

P Optimal ratio by percentile

The previous exercises examine what happens when there is an extreme increase in the
stringency of the mandatory minimum ratios, but it is not very informative of what
happens for less extreme changes in regulations or offer any prescriptive guidance.

Because of that, I answer the question: What should mandatory minimum staff-to-
child ratios be if the policy goal is to maximize the p-th percentile of the distribution of
skills at kindergarten entry? In order to answer that question, I solve for the Equilibrium
of the model in each US state and simulate the resulting US-wide distribution of skills.
For traceability, I impose that mandatory minimum ratios are restricted to be the same
for Center-Based and Home-Based providers. Because mandatory minimum ratios are
usually expressed as 1 adult per n children, I consider all the combination of ratios in
the following list:

R1 ∈
{1
8
,
1

7
. . . ,

1

3

}
R2 ∈

{ 1
12
,
1

11
. . . ,

1

5

}
R3 ∈

{ 1
14
,
1

13
. . . ,

1

7

}
From looking at table 38 we see that the optimal regulation features more stringent

ratios at younger ages for most objectives (percentiles that we want to maximize). More
stringent ratios at younger ages are a feature of reality too. The fact that the stringency
of the optimal ratio for most percentiles decreases with age should not be surprising.
First, αE,t is lower at younger ages, which implies that the flattening effect of regulations
on the price schedule is stronger at younger ages. Second, the TFP of paid care increases
with age, which implies that the cognitive development cost associated to families not
using paid care increases with the age of the child. Moreover, mandatory minimum
ratios that maximize skills at the very bottom of the distribution are more lenient than
those that maximize skills at the very top. This makes sense, given that as we have
seen before, increasing ratios increases the skills of some poor children (by inducing
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Skill-maximizing staff-to-child ratios for each percentile of the distribution of skills.

18 months 3 years old 4 years old
1st percentile 5 12 14
10th percentile 4 12 12
20th percentile 5 12 14
30th percentile 3 5 14
40th percentile 3 7 14
50th percentile 6 12 11
60th percentile 6 12 11
70th percentile 3 6 14
80th percentile 3 5 13
90th percentile 5 5 9
99th percentile 3 12 11

Table 38: Combination of children-to-staff ratios at each age that maximize skills at each percentile. For
simplicity, I impose that the mandatory minimum ratio is the same for Center-Based and Home-Based at
each age. Note that to facilitate interpretation, I report the inverse of the staff-to-child ratios, that is, the
maximum number of children per adult allowed in the classroom.

Variation in skills induced by ratios at each percentile

∆ logθ4
1st percentile 4.5%
10th percentile 5.6%
20th percentile 3.2%
30th percentile 1.6%
40th percentile 2.8%
50th percentile 2.0%
60th percentile 2.1%
70th percentile 2.5%
80th percentile 2.2%
90th percentile 2.3%
99th percentile 3.1%

Table 39: Difference in skills at each percentile between the most favorable and the least favorable staff-
to-child ratio for skills in each percentile. Skills are measured in Standard deviations of a mathematics
test score. For instance, 4.5% at the first percentile means that the minimum and maximum value for
the first percentile of the distribution of skills attainable by manipulating ratios is of 4.5% of a standard
deviation of the mathematics test score in the data.

their families to buy more quality) while decreasing the skills of other poor children (by
inducing their families to buy less paid care).A policy maker that seeks to maximize the
top of the distribution only cares about the first effect, while a policy maker that seeks
to maximize skills at the top only cares about the second. Table 39 shows the maximum
variation that can be induced by mandatory minium ratios at each percentile of the
distribution. In order to construct that maximum variation, I minimize and maximize
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each percentile of the skill distribution with respect to the mandatory-minimum ratios.
Table 39 shows that mandatory-minimum ratios are more important for skill growth
at the bottom of the distribution. This is to be expected, given that the most affected
children (negatively and positively) to mandatory minimum ratios are born to poorer
families.
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