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Abstract

This paper provides a novel constructive identification proof for non-stationary

Hidden Markov models. The identification result establishes that only two periods

of time are required if one wants to identify transition probabilities between those

two periods. This is achieved by using three conditionally independent noisy

measures of the hidden state. The paper also provides a novel estimator for non-

stationary hidden Markov models based on the identification proof. Montecarlo

experiments show that this estimator is faster to compute than maximum likeli-

hood, and almost as precise for large enough samples. Both the estimator and the

identification proof are robust to two deviations to the hidden Markov framework.

The identification proof and the estimator recover meaningful parameters without

specifying the whole distribution of all the observables and when the first-order

Markov assumption for the hidden state is not satisfied. Moreover, I show how my

identification proof and my estimator can be used in two different relevant appli-

cations: Identification and estimation of Conditional Choice Probabilities, initial

conditions and laws of motion in dynamic discrete choice models when there is an

unobservable state; and identification and estimation of the production function

of cognitive skills in a child development context when skills and investment are

unobserved.
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1 Introduction

Economists often have to deal with unobservable heterogeneity that evolves over time.

Near the end of the life-cycle, heterogeneity in health is an important driver of economic

decisions of older workers and retirees. One’s health evolves with age and is measured

with error. In the middle stages of the life-cycle, skills of workers change with time due

to the combined forces of investment and depreciation, and they are also measured with

error. Finally, at the beginning of the life-cycle, unobserved children’s skills are shaped

by imperfectly measured parental investments, which in turn affect their economic

outcomes later in life.

One way to model such processes that are unobservable and stochastically evolve

with time is by using hidden Markov models. Hidden Markov models are used in

many sub-fields of economics. In financial economics, they have been used to model

regime switches in asset characteristics (Ang and Bekaert (2002b), Ang and Bekaert

(2002a), Guidolin and Timmermann (2007)). In labor economics, they have been used to

find the extent to which people misreport unemployment (Biemer and Bushery (2000)),

or to flexibly capture labor market dynamics (Shibata (2019), Hall and Kudlyak (2019)).

In health economics, hidden Markov models have been used to classify individuals in

latent health groups according to a battery of health observables (Amengual, Bueren

and Crego (2021)).

While some identification results are available for stationary hidden Markov models,

not much is known about the identifiability of non-stationary hidden Markov models.

A notable exception is Bonhomme, Jochmans and Robin (2017), that establish identifia-

bility of some parameters of interest for a non-stationary hidden Markov model with

four periods of data. For some economic applications it may be reasonable to assume

that the underlying Markov process is stationary, but for some other applications that

assumption is too strong. For example, assuming that labor market flows (employment

to unemployment, unemployment to out of the labor force, etc) do not change with

the business cycle seems like an unreasonable assumption, and it contradicts basic

economic models such as the textbook search and matching model (see for example

Shimer (2005)). As another example, because health tends to deteriorate in adulthood,

assuming a stationary hidden Markov model for health is also implausible.

This paper fills this gap by establishing identifiability of non-stationary hidden
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Markov models under mild data requirements. This identification result additionally

yields a new set of sufficient conditions for identifiability of stationary hidden Markov

models as a by-product. In particular, using my identification argument one can show

that with access to three conditionally independent measures of the state, a stationary

hidden Markov model is identified with two periods. This is the minimum number of

periods required to identify parameters if the markovian state was indeed observed.

The idea of the identification result consist in dividing the problem of identification

in two steps. In the first step, three noisy measures are used to achieve identification

of what I call cross-sectional parameters. These are the parameters that determine the

distribution of the cross-section of the data, and include the distribution of the observed

state at each point in time and the conditional distributions of the measures given the

state. In the second step, the one-period transition probabilities of the hidden state are

identified exploiting knowledge of the cross-sectional parameters and the observation

of one of the noisy measures in two consecutive periods. Since only one noisy measure

is required to infer the dynamics of the underlying state given knowledge of cross-sectional

parameters, the identification proof does not require assumptions on the dynamics of the

other two measures. In particular, those two measures can have arbitrary correlation

structures with their own leads and lags, and with the leads and lags of the unobserved

state.

In addition, I show that the identification result generalizes without change to a

more general set of models. In particular, I show that it is not necessary to assume

that the hidden state is first-order Markov in order to identify its one-period transition

probabilities. Together with the fact that the dynamics of all the noisy measures but

one can be left unspecified, this implies that the identification result is robust to two

potentially important features of the data: Serial dependence for the unobserved state

more general than first-order Markov, and arbitrarily complicated dynamics for all the

noisy measures but one.

Inspired by the identification result, I propose a novel estimator for non-stationary

hidden Markov models that is root-n consistent and asymptotically normal. This

estimator can be used when the researcher has access to longitudinal data and at least

three measures that are assumed to be noisy signals of the true underlying markovian

state. Note that for many relevant applications, having three measures of the state is
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not a strong requirement. For instance, having access to three measures in a health

economics application is often feasible because commonly used datasets, such as HRS,

ELSA and SHARE, contain a large battery of measures of health. Similarly, CPS contains

questions that can be informative of labor force status besides the usual self-reported

measure, so the identification and estimation results in this paper can also be used in a

labor market application similar to the ones mentioned above1.

Using a set of Montecarlo experiments, I show that this new estimator behaves well

in finite samples. Additionally, I compare this new estimator to maximum likelihood. I

find that my estimator is computationally less demanding (as measured by computing

time) but less precise. However, for large samples the loss in precision is negligible,

while the decrease in computational cost is substantial.

Moreover, I show that my identification and estimation results can be used in two

different settings of importance to economists. More concretely, my identification result

can be used to show constructively non-parametric identification of conditional choice

probabilities, initial conditions and laws of motion of the observed and unobserved

state in the context of a dynamic discrete choice model. In this application, the evolution

of the hidden state is allowed to be influenced by observable choices and states, in

the spirit of Hu and Shum (2012) and Hwang (2021). Moreover, I also show that

my identification and estimation results can be used to establish identification and to

estimate the production technology of cognitive skills in a child development context.

In this application, investment and skills are assumed to be discrete and unobserved.

Taken together, these two applications illustrate how the results in this paper for

non-stationary hidden Markov models can also handle cases in which the evolution of

the unobservable state is endogenously affected by observed and unobserved variables.

The rest of the paper is organized as follows: Section 2 discusses the related literature.

Section 3 presents the identification result. Section 4 presents the two-step estimator

for non-stationary hidden Markov models and discusses the Montecarlo experiments.

Section 5 reviews the two applications. Section 6 concludes.

1For an excellent review of datasets that contain many noisy measures of unobserved variables that

are relevant for economics see Hwang (2021)
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2 Related literature

This paper contributes to the economics literature that applies hidden Markov models

to different substantive problems, as well as the econometric and statistical literature

that studies identification and estimation of hidden Markov models. Moreover, the two

applications in the paper contribute to two additional strands of the literature. The

first application provides identification and estimation results that are useful for the

dynamic discrete choice literature, while the second application does the same for the

child development literature.

Hidden Markov models have been succesfully used in the macro-labor literature.

For instance, Shibata (2019) argues that a hidden Markov model represents better labor

market dynamics than the commonly used First Order Markov (FOM) model (in which

transition probabilities between labor force status categories depend only on current

labor force status). One of the facts that motivates Shibata (2019) to adopt a hidden

Markov model is that the FOM model cannot match the observed state dependence in

job-finding rates. This is because job-finding rates decrease with duration in the data,

while in the FOM model they stay constant by assumption. However, the stationary

hidden Markov model that he considers does not allow the shape of this state depen-

dence to change with the business cycle, while Kroft, Lange and Notowidigdo (2013)

find, using cross-sectional evidence, that the shape of the duration-callback rate profile

changes with aggregate labor market conditions. If this difference in callback rates

is translated to a difference in job-finding rates, a stationary hidden Markov model

would fail to capture this difference, whereas a non-stationary one would not. Hall

and Kudlyak (2019) use a stationary hidden Markov model to model the observed

heterogeneity in labor market transitions. They assume that workers can belong to

finite number of time invariant types. In addition, at each point in time, workers can

be in four different time varying states. The identification result in this paper implies

that one can identify a version of Hall and Kudlyak (2019) model where transition

probabilities between unobserved states change with the business cycle. Note that the

presence of types is not a problem, since a hidden Markov model with L types and r

states can be viewed as a model with L× r states and a block-diagonal transition matrix,

hence my identification result covers the case with types provided that one has access

to appropriate noisy measures for them. Hidden Markov models have also been used
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in labor to handle measurement error in self-reported labor market status. An example

of this is Biemer and Bushery (2000). However, Biemer and Bushery (2000) assume

stationary transition probabilities for the state. That is, they assume that flows between

different labor force status are stationary. Therefore, their results could be biased if the

transition probabilities between labor force status categories changes with the business

cycle. A closely related paper to Biemer and Bushery (2000) is Feng and Hu (2013). They

also correct for measurement error in self-reported labor market status, and find that

the stock of unemployed workers in the US is underestimated when calculated using

self-reported labor-market status in the CPS. One advantage in their framework is that

they do not rely on the stationarity of the transition probabilities between unobserved

labor market status categories, nor on labor-market status being first order Markov.

However, they do not establish identification of the transition probabilities between

those labor market categories. This paper is able to establish identification of those one

period transition probabilities, without assuming that labor-market status is stationary.

Moreover, even though I am framing all the results as they apply to hidden Markov

models, my identification proof can be used to show identification of the one period

transition probabilities, even if the true underlying state is not first order Markov.

Another strand of the economics literature in which hidden Markov models have

been applied is health economics. Amengual et al. (2021) use a non-stationary hidden

Markov model to classify individuals in unobserved health groups using information

on health measures from HRS. In order to estimate their model they use Markov Chain

Montecarlo techniques. My paper ensures identification of their model, and provides a

simpler estimation procedure.

The first application discussed in the paper contributes to the dynamic discrete

choice literature. From Hotz and Miller (1993), we know that the estimation of many

dynamic discrete choice models can be simplified by first estimating reduced-form

conditional choice probabilities (CCP), the law of motion of the states and initial

conditions.Arcidiacono and Miller (2011) show how to extend the estimation ideas from

Hotz and Miller (1993) to models in which there is an unobservable state that is allowed

to evolve according to a Markov chain or to stay constant with time. In Arcidiacono

and Miller (2011), the time-varying unobservable state is exogenous, in the sense that

its evolution is not allowed to be influenced by other variables in the model. Moreover,
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it is stationary, in the sense that its law of motion does not change with time. Hu and

Shum (2012) show that that CCP’s, laws of motion of the states and initial conditions

can be identified in a model with an endogenous and non-stationary hidden state. Their

identification result requires five periods of data for a non-stationary model, and four

for a stationary one. It is important to note that in Hu and Shum (2012) the observable

measure of the state is allowed to be an endogenous variable that partially determines

the evolution of the unobserved state, which expands the set of noisy measures that

can be used for identification. Hwang (2021) shows that with three conditionally

independent measures of the state, CCP’s initial conditions and laws of motion can be

identified with two periods of data. Hence, transition probabilities for T −1 periods can

be identified with T periods of data. Moreover, she proposes a two-step estimator for

structural parameters, where the first step of the estimator amounts to maximizing an

empirical log-likelihood using the EM algorithm. My identification result has similar

requirements to the ones in Hwang (2021) (three conditionally independent measures,

2 periods of data for a stationary model). However, my identification result has some

advantages with respect to the one in Hwang (2021). First, the identification result

in this paper is fully constructive, whereas Hwang’s result is not. This is not only

conceptually nice, but it also has the advantage of leading naturally to an estimator of

the reduced-form CCP’s, initial conditions and laws of motion. Second, the estimator

proposed here is computationally less-expensive than maximum lilkelihood, which

implies that using it as a first-stage towards estimating structural parameters in a

dynamic discrete choice model can reduce computational cost. Third, the rank condition

on the conditional distribution of the measures given the state required in this paper

has testable implications, whereas the rank condition required by Hwang (2021) seems

difficult to test 2. Finally, when no noisy measure of the state is observed twice, my

identification result generalizes without restricting the law of motion of the unobserved

state to be stationary and without restrictions on transition probabilities of the observed

state given the unobserved state, which strengthens the results in Hwang (2021) (see

Appendix B in this paper for more on this).

In addition, my identification argument yields identification of all the reduced-

form probabilities of interest without assuming limited feedback, which is assumed

2See footnote 7 in Hwang (2021)
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in Hwang (2021) and Hu and Shum (2012). Furthermore, I establish identification of

observable choices and states tomorrow given observable choices and states today and

the unobserved state today and tomorrow, which opens the possibility to testing the

limited feedback assumption.

The second application in this paper contributes to the literature in child-development.

The results presented in this paper can be used to establish non-parametric identifica-

tion of the production technology of children’s skills. The identification result presented

here assumes that all the relevant unobserved variables (skills and investments) are

discrete. Note that existent non-parametric identification result for the technology of

children’s skill formation assume that investments and skills are continuous, but in

doing so they require their noisy measures to be continuous too (see for example Cunha,

Heckman and Schennach (2010)). The result presented in this paper acknowledges

that the discreteness of the measures imposes a restriction on the level of granularity

one can allow for when identifying the production function of cognitive development.

Moreover, the estimator presented in this paper can be used to estimate the technology

of cognitive and non-cognitive achievement in a tractable way.

This paper also relates to the literature on identification of hidden Markov models.

Possibly the first identification result for Hidden Markov models is due to Petrie (1969).

However, one limitation of his result is that it requires the whole distribution of the

observed measures for identification, that is, the distribution of the whole infinite

history of observed signals emitted by the markovian state. As noted by Allman,

Matias and Rhodes (2009), one can lower this requirement by invoking the result from

Paz (1971) that the distribution of a stationary hidden Markov model with r unobserved

states is fully characterized by 2r− 1 observations. Allman et al. (2009) provide a new

set of sufficient conditions for identification in stationary hidden Markov models using

algebraic results due to Kruskal (1976) and Kruskal (1977). The minimum number

of consecutive observations required to get identification using their result decreases

with the cardinality of the support of the observed measure. Recent results from

Gassiat, Cleynen and Robin (2013) and Bonhomme, Jochmans and Robin (2016) lower

the number of required observed periods even further to three. My paper establishes

that for a stationary hidden Markov model we can lower the number of periods

required for identification to two, provided that one has access to three conditionally
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independent measures of the state. In the context of a non-stationary hidden Markov

model, Bonhomme et al. (2017) establish identification of the joint distribution of the

hidden Markov state in periods two and three and the noisy measure of the state in

periods two and three, under the condition that four periods of data are observed and

there is one noisy measure of the hidden Markovian state. This paper shows that a

stationary hidden Markov model can be identified with two periods of data if three

noisy measures of the state are avaialable at each period. Hence, a emission matrices

and T − 1 transition probabilities can be identified for a non-stationary hidden Markov

model with T periods of data. Another contribution by this paper to the statistical

literature is noting that results in the dynamic discrete choice literature, such as the

ones in Hu and Shum (2012), Hwang (2021) and this paper, can be useful to users of

hidden Markov models outside of economics to establish identification of their models.

Finally, this paper contributes to the literature on estimation of hidden Markov

models. First, because inference on parameter estimates for non-stationary hidden

Markov models only makes sense if the true parameters are identified. Second, because

this paper proposes a novel estimator for non-stationary hidden Markov models. As I

show below, this estimator is faster than the Baum-Welch3 algorithm when the data is a

balanced panel. Moreover, as I will argue later , when the data contains refreshment

samples the Baum-Welch algorithm becomes computationally very involved, while my

estimator is as tractable as in a balanced panel.

3 Identification result

3.1 Non-stationary hidden Markov model.

Consider a Hidden Markov model of the following form: The underlying state, call it

St, can take r values, that is:

St ∈ {1,2, . . . , r}

Moreover, St follows a Markov process. Let Kt be the following matrix:

(Kt)i,j =P(St+1 = j|St = i)

3The Baum-Welch algorithm is an EM-type algorithm used to calculate Maximum-Likelihood esti-

mates for hidden Markov models in a computationally efficient manner.
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Note that I allow the transition matrix to depend on time in an unrestricted fashion. At

each point in time, the econometrician can observe three measures that are conditionally

independent given the contemporaneous state. Call this measures Y1t ,Y2t ,Y3t . The

conditional distribution of Ymt is given by the matrix Pm for m= 1,2,3:

Pm =
(
pm1 , pm2 , .... ,pmr

)
where

pmc =P(Ymt |St = c)

is the distribution of Ymt given St = c Moreover, denote by πt the distribution of St , that

is:

πt =
(
P(St = 1), P(St = 2), .... P(St = r)

)

3.2 Identification of the non-stationary Hidden Markov model

The identification result proceeds in two steps. In the first step, which I call the cross-

sectional step, I establish identification of Pm for m= 1,2,3 and πt, the cross-sectional

distribution of the underlying state at time t.4. This can be done just by making sure

that the sufficient conditions in Bonhomme et al. (2016) are satisfied.

Once identification of Pm,m = 1,2,3 and πt, t = 0, ...T are secured, I establish the

identification of the transition matrices {Kt}
T−1
t=0 for the hidden markovian state in what I

call the longitudinal step. This is done by noticing that under appropriate conditional

serial independence assumption for one of the measures, say Y1, one can write the

joint distribution of Y1t and Y1t+1, which is observed, as a function of πt, πt+1, P1 and Kt.

Under the same conditions required for the cross-sectional identification step, one can

invert this relation in closed-form for Kt as a function of the joint distribution of Y1t and

Y1t+1 and parameters that were identified in the cross-sectional step.

The two conditional serial independence assumption that are needed are the follow-

ing:

Assumption 1. (i) P(St+1|St,Y
1
t ) =P(St+1|St) for t= 0, ...T − 1

(ii) P(Y1t |St+1,Y
1
t+1) =P(Y1t |St+1) for t= 1, ...T

4Note that this cross-sectional distribution of the state at t is implied by π0 and Kt and therefore is

not a "primitive" of the model for t > 0
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Assumption 1 (i) says that Y1 today does not help predicting the state tomorrow

once the state today is known. Assumption 1 (ii) says that Y1 tomorrow does not help

predicting Y1 today once the state tomorrow is known. Note that both assumptions are

implied by B1 and are therefore weaker:

Assumption B1. P(Y1t |Y
1
0 , ...Y

1
t−1,Y

1
t+1, ...Y

1
T ,S0, ...,ST ) =P(Y1t |St) for all t= 0, ....T

Assumption B1 is assumed in estimation of hidden Markov models. The identifica-

tion results presented here build on Theorems 1-3 in Bonhomme et al. (2016) for the

identification of multivariate latent-structure models applied to the particular case of

finite-mixture models with discrete measurements. It is well-known that this models

are only identified up to a joint permutation of the columns of the mixing proportions

and the component distributions. Hence, for point-identification we need to make sure

that a unique re-labeling of the states is available from the emission matrix of some of

the measures. This is ensured by the following assumption:

Assumption 2. There exist i and m∗ known by the researcher such that for row i of matrix

Pm
∗ we have Pm∗i,j , P

m∗
i,j ′ for all column j , j ′ and either:

i) Pm∗i,j is increasing in j or

ii) Pm∗i,j is decreasing in j.

Note that Assumption 2 is implied by some common assumptions in the literature,

such as Assumption 2 i) in Hwang (2021). Assumption 2 will be true if the unobserved

state and one of the measures have a natural ordering, and a monotonicity condition

between them holds. For example, if the unobserved state is health, and the noisy

measure is number of limitations with Activities of Daily living, Assumption 2 will

hold if the probability of suffering from limitations with all Activities of Daily Living

decreases as health gets better.

Now I present the identification result:

Theorem 1. Suppose that Pm for m = 1,2,3 is full column rank and πt(c) > 0 for c = 1, ...r.

Under Assumption 1 and 2 the model is identified.

Proof. I will make the identification argument for K0, π0, π1 , {Pm}m=1,2,3. The argument

for the remaining periods is a trivial extension of this argument.

From Bonhomme et al. (2016) Theorems 1-3, π0, π1 , {Pm}m=1,2,3 are identified up to a
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joint permutation. Moreover, there is only one permutation consistent with 2, so π0, π1 ,

{Pm}m=1,2,3 are point-identified. Hence, it only remains to show that K0 is identified. To

see that this is the case, note that the joint distribution of Y10 and Y11 is given by:

P(Y10 ,Y
1
1) = P

1Π0K0Π
1−1(P1Π1)

′

where

P(Y10 ,Y
1
1)i,j =P(Y10 = i,Y

1
1 = j)

and

Πt = diag(πt)

Let Ω0 = P1Π0 and Ω1 = Π−1
1 (P1Π1)

′ .

Since P1 is full column-rank by assumption:

K0 = (Ω ′0Ω0)
−1Ω ′0P(Y10 ,Y

1
1)Ω

′
1(Ω

′
1Ω1)

−1

Since P(Y10 ,Y
1
1) is observable and Π1,Π0 and P1 are identified this completes the proof.

It is worth noting that one of the sufficient conditions in the previous proposition

involves {πt}
T
t=1, which are in themselves functions of π0 and {Kt}

T−1
t=0 . To see what the

condition of πt for t > 0 implies in terms of π0 and {Kt}
T−1
t=0 note that I can write the i-th

element of π1 as:

π1(i) =

r∑
j=1

K0(j, i)π0(j)

Since π0(j)> 0 by assumption, a sufficient condition for π1(i) to be non-zero is K0(j, i)> 0

for some j. Hence, it is sufficient for all the columns of K0 to be non-zero. By induction,

we have that if π0(j) > 0 for all j and Kt has non-zero columns for all t, then πt has

non-zero elements for t > 0.

Since the cross-sectional step a constructive result from the literature to identify

the cross-sectional parameters, and since the longitudinal step of the proof is also

constructive, the proof of Theorem 1 in this paper is fully constructive.

Note that the cardinality of the noisy measures limits the cardinality of the unob-

served state via the full-column rank assumption. More precisely, in order to apply 1,

we need three noisy measures of the unobserved state with as many points of support

as the unobserved state. Note that the previous identification result only requires one of
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the measures (Y1) to comply with the usual conditional serial independence assumption

for Hidden Markov Models. This has various implications. First, the weakness of

this requirement expands the set of measures that can be used for identification and

estimation of non-stationary Hidden Markov models. It also implies that estimation

strategies for non-stationary Hidden Markov models that rely on a full-information

likelihood approach are unnecessarily restrictive.

Moreover, if more than one noisy measure Ym, say Y1 and Y2, can plausibly satisfy

the conditional serial independence assumption, this opens the door for an overiden-

tification test. This is because one can identify Kt from Y1 and Y2 and compare the

results.

Also, note that in order to identify Kt we only need data from t and t+1. This implies

that we can identify a stationary hidden Markov model with only two observed periods.

To the best of my knowledge, this is a new identification result. This shows that the

identification approach in this paper trades-off data requirements in two dimensions:

by requiring three noisy measures of the hidden Markov state at each point in time one

can reduce the number of periods needed to identify the stationary hidden Markov

model.

Another important observation is that the full-column rank assumption of the

emission matrices is testable. As noted by Bonhomme et al. (2016), the rank assumptions

on P1 and P2 imply that P(Y1t ,Y
2
t ) has rank r. The same applies to a pair of variables

including Y3. Hence, the full-column rank assumptions on P1, P2 and P3 are testable.

Finally, the identification proof does not uses that St is first-order Markov 5. Hence,

my identification result can be used to ensure identification of the one period transition

probabilities of the state even if St is not first order Markov. This may be relevant in

some applications. For example, even if one is not willing to assume that the true

unobserved labor force status is first order Markov (maybe because the whole history

of employment for a particular worker affects physical or human capital of workers,

which in turn affects the probability of moving out of unemployment) the identification

result in this paper tells us that one can still identify labor market flows from noisy

measures of labor market attachment.

5More on this on Appendix A
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3.3 Identification with one measure and three periods.

The closed form expression for Kt presented in the proof of 1 can be used to prove

constructively identification of non-stationary hidden Markov models under a different

set of data requirements. More concretely, with at least three time periods (T > 3) we

can use Yt−1,Yt,Yt+1 as noisy measures of the unobserved state St, given that in a hidden

Markov model they are conditionally independent given St. Then, we can identify the

conditional distribution of Yt|St, call it P, using the results from Bonhomme et al. (2016).

If this conditional distribution is time-invariant, then we can infer the cross-sectional

distribution of the unobserved state at each t from the knowledge of P and the observed

cross-sectional distribution of Yt at each t, that is πt in the notation of this paper. These

pieces of information, P and πt, are then enough to invert for Kt if we have longitudinal

observations at t and t+ 1. This is formalized in the following Theorem:

Theorem 2. Let the data generating process be given by the one in Section 3.1 withm= 1, and

let the noisy measure of the state be denoted by Yt and its corresponding emission matrix be

denoted by P. Suppose that 2 holds for some row of P. Suppose that {Yt}Tt=1 is observed and that

T > 3. Moreover, suppose that P is full column rank, and that πt has no zero elements for any t.

If Yt−1 ⊥ Yt ⊥ Yt+1|St for some t, then P, {πt}Tt=0 and {Kt}
T−1
t=1 are identified.

Proof. Since Yt,Yt−1,Yt+1 are conditionally independent given St, P is full column rank

and πt has no zero elements, P is identified from Theorem 2 in Bonhomme et al. (2016)

up to a re-ordering of its columns. Since 2 holds for P there is only one possible

re-ordering and P is point-identified. Since P is identified and the cross-sectional

distribution of Yt, P(Yt), is observed, πt for each t is identified from:

πt = (P ′P)−1P ′P(Yt)

since

P(Yt) = Pπt

From knowledge of πt, P and P(Yt,Yt+1), we can write Kt as:

Kt = (Ω ′tΩt)
−1Ω ′tP(Yt,Yt+1)Ω

′
t+1(Ω

′
t+1Ωt+1)

−1

where Ωt = PΠt and Ωt+1 = Π−1
t+1(PΠt+1)

′
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Note that again this proof is entirely constructive, given that the identification of

P comes from the constructive proofs of Theorems 1 and 2 in Bonhomme et al. (2016),

and πt and Kt are identified constructively in closed-form.

Again, it should be noted that the generality of this result extends beyond non-

stationary hidden Markov models. First, the requirement of Yt−1,Yt,Yt+1 for some t

is weaker that what is commonly assumed for hidden Markov models. Moreover,

even if St is not markovian we will be able to identify Kt as the one period transition

probabilities.

It should be noted that the result that we can identify emission matrices and cross-

sectional distributions of the state with T = 3 under assumptions similar to the ones

here is not new. In fact, that result is due to Feng and Hu (2013). What is new here with

respect to their paper is the identification of the transition probabilities.

It is worth comparing Theorems 1 and 2 to Proposition 3 in Bonhomme et al. (2017),

which also provides an identification result for non-stationary Markov models. While

Proposition 3 in Bonhomme et al. (2017) requires four periods of data to identify

transition probabilties of the unobserved state from the second to the third period

Theorems 1 and 2 are able to identify transitions of the unobserved state from the

second to the third with only three periods of data. Moreover, with four periods of data

Proposition 3 does not secure identification of transition probabilities of the unobserved

state from the first to the second period, while 1 and 2 is able to do that with only three

periods of data. On the other hand, Proposition 3 in Bonhomme et al. (2017) can handle

continuous measures, while Theorems 1 and 2 in this paper cannot.

Next, I turn my attention to estimation of first-order non-stationary hidden Markov

models.

4 Two-step estimator for Hidden Markov Models

The proof of Theorem 1 shows that the problem of identifying a non-stationary hidden

Markov model can be divided into two sub-problems. In the first sub-problem, we

identify parameters that determine the cross-sectional distribution of measures. In

the second sub-problem, we identify the period-t transition matrix from the joint

distribution of measures in t and t+1 and parameters identified in the first sub-problem.
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I now show how to apply the same principle to parameter estimation.

Since the cross-section of measures at t is generated by a finite-mixture model with

mixing proportions πt and component distributions P1,P2,P3, one can estimate those

parameters using one of the existing consistent and asymptotically normal estimators

for finite mixture models with discrete measurements, such as Maximum Likelihood or

the joint diagonalization estimator of Bonhomme et al. (2016). This results in T + 1 esti-

mates of Pm and in estimates of {πt}Tt=0. Each of those is a consistent and asymptotically

normal. Alternatively, a convex combination with arbitrary weights is also a consistent

and asymtptotically normal estimator for Pm. Then, Kt can be estimated by calculating

the sample analogue of the closed-form expression for Kt found in Proposition 1. The

consistency and asymptotic normality of the estimator for Kt then follows from the con-

sistency and asymptotic normality of the estimates for the cross-sectional parameters

and the Continuous Mapping Theorem.

4.1 Estimator

Given N independent cross-sectional units observed for T periods of time, each of them

drawn from the model in Section 3 , the two step estimator works as follows:

1. For each t = 1, ...T estimate πt (the distribution of the state at t) and {Pmt }m=1,2,3

using some
√
n consistent and asymptotically normal estimator. Examples of

√
n

consistent and asymptotically normal estimators at this stage are the MLE (that

can be found using direct maximization of the likelihood or the EM algorithm)

or the joint approximate diagonalization estimator proposed in Bonhomme et al.

(2016). Re-lable the estimates for Pm and πt according to Assumption 2. Call the

corresponding estimates π̂t and P̂mt . Then, the estimator for π0 is given by: π̂0 and

the estimator for Pm is given by:

P̂m =

T∑
t=1

αmt P̂
m
t

with
T∑
t=1

αmt = 1

2. For each t= 1, ...T − 1 estimate Kt as:

K̂t = (Ω̂ ′0tΩ̂0t)
−1Ω̂ ′0tP̂(Y1t ,Y

1
t+1)Ω̂

′
1t(Ω̂

′
1tΩ̂1t)

−1
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where

Ω̂0t = P̂
mΠ̂t

Ω̂1t = Π̂
−1
t+1(P̂1Π̂t+1)

′

where

Π̂t = diag(π̂t) for t= 0,1, ...T

and where P̂(Y1t ,Y
1
t+1) is the joint frequency estimator of P(Y1t ,Y

1
t+1)

Note that αmt is chosen by the researcher. As long as αmt is chosen so that
∑m
t=1α

m
t = 1,

asymptotic normality and consistency will be preserved. However, the finite sample

properties and the asymptotic variance of the estimator may depend on the particular

choice of {αmt }Tt=0 .

4.2 Asymptotic Theory.

The previous estimator starts with consistent and asymptotically normal estimates

for Pm, m = 1,2,3 and πt for t = 1,2, ...T . Under the full-rank assumption for Pm and

the assumption that πt has no zero entries for any t, consistent and asymptotically

normal estimates can be found using MLE or the joint-diagonalization estimator of

Bonhomme et al. (2016). The estimate for Kt inherits these properties because it is given

by a continuous function of consistent and asymptotically normal sample statistics.

This is formalized in the next two propositions:

Proposition 1. Suppose Assumptions 1 and 2 hold. Suppose that {π}Tt=0 has all elements

greater than zero. Suppose that Pm has full column rank for all m. Then the two-step procedure

described above produces consistent estimates of π0, Pm for m= 1,2,3 and Kt for t= 1, ...T − 1.

That is:

π̂0→p π0

P̂m→p P
m

K̂t→p Kt

17



Proof. π̂0 is consistent by assumption. P̂m is a convex combination of consistent estima-

tors of P, so by Lemma 2.3 a) in Hayashi (2000) (the Continuous Mapping Theorem for

probability limits) is consistent. For the consistency of K note that

Ω̂0t→p Ω0t

again by the continuous mapping theorem, where Ω0t is defined as in the identification

section.

The same argument applies to Ω̂1t and Ω1t.

Finally, P̂(Y1t ,Y
1
t+1) is consistent for P(Y1t ,Y

1
t+1), since it is a frequency estimator. Hence,

by the Continuous Mapping Theorem and the fact that Kt is given by the expression

provided in the identification section, K̂t is consistent for Kt

Proposition 2. Suppose Assumptions 1 and 2 hold. .Suppose that {π}Tt=0 has all elements

greater than zero. Suppose that Pm has full column rank for all m. Then the two-step proce-

dure described above produces asymptotically normal estimates of π0, Pm for m = 1,2,3 and

Kt for t= 1, ...T − 1.

Proof. The proof follows the same step as the previous one replacing convergence in

probability by convergence to a normal random variable and replacing the Continuous

Mapping Theorem for probability limits by the Delta Method.

The precise asymptotic variance for K̂t can be calculated from knowledge of the

asymptotic variance-covariance matrix of the cross-sectional parameters and P̂(Y1t ,Y
1
t+1)

using the Delta Method. Note that the delta method can be applied here since the

mapping from the vector of cross-sectional parameter estimates and the joint-frequency

of Y1 at t and t+ 1 is differentiable. However, this approach is impractical, since it

depends on the covariances of the cross-sectional parameters and P̂(Y1t ,Y
1
t+1). Moreover,

it depends on the particular method chosen to conduct the cross-sectional estimation

step. However, since the two-step estimator is fast to compute, a researcher interested

in conducting inference can do so using bootstrap.

The desirable asymptotic properties of the two-step estimator follow from the fact

that the longitudinal estimation step is given by the sample analogue of a known

closed form expression for Kt in the population. Hence, the asymptotic properties

of the estimator for Kt will go through as long as the population expression for Kt
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remains valid. This implies that the two-step estimator is robust to at least two relevant

deviations from assumptions commonly used in the literature.

First, as discussed in the identification section, the population expression for the

one period transition probabilities for the unobserved state remains valid even if the

state is not first-order Markov.

Second, note that in order to find Kt in the population I did not have to make

assumptions on the distribution of Y2t and Y3t given their own past and future and the

past and future of the state. The only thing that is required from Y2t and Y3t is to be con-

ditionally independent (jointly with Y1t ) given the contemporaneous unobserved state

St. This is because once the cross-sectional parameters are identified, the identification

of Kt comes from the one-period-ahead dynamics of Y1t .

This robustness should be contrasted with Maximum Likelihood Estimation, which

is commonly used in the estimation of hidden Markov models, and it requires specifying

the whole distribution of the data.

4.3 Imposing restrictions on the estimates for Kt

One issue with the estimator presented above is that it does not impose that the resulting

estimate for Kt is a valid transition matrix. Hence, due to sample noise it wont typically

be. One easy fix for this is to divide each element of K̂t by the sum of elements in its

row. This normalization will yield a valid transition matrix if all of the elements of K̂t

are non-negative. This does not seem to be an issue in the Montecarlo experiments.

Moreover, since this normalization is a continuous function that leaves Kt unaltered at

the true population value, it retains consistency and asymptotic normality.

If the negativity of some element of K̂t turns out to be an issue in a particular

application, there are some alternative procedures that can be used to estimate the

parameters of the model. For instance, one can impose parametric restrictions on Kt,

and estimate the parameters of Kt by simulated minimum distance using K̂t from the

previous two-step estimator as targets in the minimum distance objective. Since K̂t

is consistent and asymptotically normal and Kt is identified, this minimum distance

procedure should yield consistent and asymptotically normal estimates. Another way

of imposing the restriction that the estimate for Kt is a stochastic matrix is by using the

following two-step procedure:
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1. This step is the same as the first step for the two-step estimator introduced

above. For each t = 1, ...T estimate πt (the distribution of the state at t) and

{Pmt }m=1,2,3 using some consistent and asymptotically normal estimator. Call the

corresponding estimates π̂t and P̂mt . Then, the estimator for π0 is given by: π̂0 and

the estimator for Pm is given by:

P̂m =

T∑
t=1

αmt P̂
m
t

with
T∑
t=1

αmt = 1

2. Iterate between the following two steps until convergence:

• E step: Given estimates for πt,πt+1,P1,P2,P3 , {Y1i,τ}τ=t,t+1 and a guess for K(h)
t

calculate the filtered probabilities:

v̂i,k,j :=P(Si,t+1 = j,Si,t = k|Y
1
i,t,Y

1
i,t+1, {π̂τ}τ=t,t+1.P̂

1Kht )

These filtered probabilities can be calculated as follows:

v̂i,k,j =
P̂1(y1i,t,k)π̂t(k)K

(h)(k,j)P̂1(y1i,t+1, j)∑r
j=1

∑r
k=1 P̂

1(y1i,t,k)π̂t(k)K
(h)(k,j)P̂1(y1i,t+1, j)

• M step: Calculate the new guess K(h+1)
t as:

K
(h+1)
t = argmax

K

N∑
i=1

{ r∑
k=1

r∑
j=1

v̂ikj log(K(k,j))
}

s.t
r∑
j=1

Kt(k,j) = 1 for all k

r∑
j=1

K(j,c)π̂t(j) = π̂t+1(c)

The second step of the procedure is an EM algorithm that seeks to maximize the

log-likelihood of the dataset given by {Y1τ ,Y
2
τ ,Y

3
τ}t=t,t+1 taking as known the first-stage

estimation parameters and imposing that the distributions in t and t+ 1 are consistent

with Kt. Hence, the estimator for Kt will be consistent and asymptotically normal

since it can be viewed as a two-stage M estimator and since Kt is identified from
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{Y1τ ,Y
2
τ ,Y

3
τ}t=t,t+1 given the cross-sectional parameters (see Section 12.4 in Wooldridge

(2010)). Moreover, note that the computation of the M step is numerically tractable,

since it amounts to solving a program with a concave objective and convex constraint

set.

4.4 Two-step estimator vs Maximum Likelihood: Computing time

and precision.

In this subsection I compare the performance of the two-step estimator with the per-

formance of Maximum Likelihood in terms of precision and computing time using

Montecarlo simulations.

For the Montecarlo simulations, the data is generated according to the hidden

Markov model described in the identification section. I choose r= 2 and T = 3. More-

over, I let K1 and K2 be different so that the data comes from a non-stationary hidden

Markov model. More concretely, I let K1 and K2 be given by:

K1 =

0.8 0.2

0.2 0.8



K2 =

0.6 0.4

0.5 0.5


Moreover, the emission matrices are given by:

P1 =


0.1 0.5

0.7 0.3

0.2 0.2



P2 =


0.2 0.4

0.6 0.2

0.2 0.4



P3 =


0.25 0.35

0.55 0.25

0.2 0.4
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The initial distribution of the state is given by:

π0 = (0.3,0.7)

Since emission matrices are full-column rank and Kt has non-zero columns for

t= 1,2, so the conditions for identification are met. All the conditions for identification

are met.

I consider three different sample sizes: N = 500,5000,15000. For each sample size,

parameters are estimated using the Baum-Welch algorithm and the two-step estimator

respectively. The Baum-Welch algorithm is a popular algorithm to find maximum like-

lihood estimates in hidden Markov models. It can be viewed as a particular application

of the EM algorithm. See Baum, Petrie, Soules and Weiss (1970) for a classic reference

on the Baum-Welch algorithm.

The first step of the two-step estimator is conducted using Maximum Likelihood and

the EM algorithm for t= 1,2,3. Initial guesses for the EM algorithm used in the cross-

sectional step and for the Baum-Welch respectively are selected at random. I compare

mean absolute errors and computing times for numbers of random initialization equal

to: 20,50,80.

Mean absolute errors are calculated across M= 25 Montecarlo experiments for each

N For example, the mean absolute error for P̂1 is calculated as:

MAE(P1) = max
i,j

1

20

25∑
m=1

|P̂m1 (i, j)−P1(i, j)|

In Figure 1 we can see the sup-norm of the mean absolute error as a function of

the number of cross-sectional units for estimates of the cross-sectional parameters

calculated using the maximum likelihood estimator and the two step estimator respec-

tively. In Figure 2 we can see an analogous comparison for the transition parameters

in K = [K1,K2]. As we can see, the Maximum Likelihood estimator seems to be more

precise than the two-step estimator (as one would expect). However, Figure 3 also

suggests that it is more expensive in terms of computing time.

It is worth mentioning that in Figures 1, 2 and 3 the first step of the two-step

estimator, and the full-likelihood maximization for the maximum likelihood estimator,

are conducted using a few local search of the EM algorithm. Since the EM algorithm

is not guaranteed to converge to a global maximum of the sample log-likelihood, the
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sup-norm of the mean absolute error is not only going to reflect sampling error, but

also computational error coming from the failure of finding a global maximum for

some Montecarlo artificial samples. In order to asses to which extent the difference in

precision comes from this computational error, as well as to provide a more meaningful

comparison between the estimators, we compare computing time and precision for

different sample sizes for many numbers of local searches.6 Figures 1, 2, 4, 5, 6, 7

provide the comparison in precision between the two estimators as a function of the

number of cross-sectional units, and figures 3, 8 and 9 compare the computing time

as a function of the number of cross-sectional units for the two estimators. As we can

see, as the number of local maximizations increases, the precision of the two estimators

becomes more similar. Moreover, as the sample size increases, the precision of the two-

step estimator converges to the precision of the full-information maximum-likelihood

estimator when the number of local maximizations is reasonably high. Moreover, the

computing time of both estimators increases with sample size, but the computational

cost of the Baum-Welch algorithm grows faster with sample size than the computational

cost of the two-step estimator. Putting this evidence together, this suggests that for small

samples the Baum-Welch estimator may be preferable, whereas for larger samples the

two-step estimator may be more practical since it achieves a computational efficiency

higher than the one of the Baum-Welch algorithm at a small finite-sample precision

cost.

It is worth emphasizing that the two-step estimator requires fewer assumptions

than full-information maximum likelihood estimation. In other words, the two-step

estimator is more robust. In particular, the two step estimator requires only Assump-

tions 1 , whereas full-information maximum likelihood requires Assumption B1 for not

only Y1, but also Y2 and Y3. Therefore, the two-step estimator is applicable in situations

where maximum-likelihood is not.

Moreover, in the previous Montecarlo exercises we only used information on Y1 in

the longitudinal estimation step of the two-step estimator. That is, we calculated Kt

using only P̂(Y1t ,Y
1
t+1) Under the same assumptions as in full-maximum likelihood one

6By local searches I mean the number of times we run the EM algorithm to find a local maximum.

This is done for the two-step estimator to estimate cross-sectional parameters and the distribution of the

hidden state at each t, and in the Baum-Welch algorithm to estimate all the parameters simultaneously.
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could combine estimates of K using information on Y1,Y2,Y3. This could improve the

finite-sample properties of the two-step estimator and make them more similar to the

ones of full-information maximum likelihood. 7

Figure 1: Mean absolute error for different sample sizes. Number of local searches = 20

7If one wants to apply the two-step estimator and does not impose the conditional serial indepen-

dence assumption on Y2 and Y3, one should allow P2 and P3 to change with time. This doesn’t add any

computational complication.
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Figure 2: Mean absolute error for different sample sizes. Number of local searches = 20

Figure 3: Computing time for different number of units. Number of local searches = 20
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Figure 4: Mean absolute error for different sample sizes. Number of local searches = 50

Figure 5: Mean absolute error for different sample sizes. Number of local searches = 50
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Figure 6: Mean absolute error for different sample sizes. Number of local searches = 80

Figure 7: Mean absolute error for different sample sizes. Number of local searches = 80
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Figure 8: Computing time for different number of units. Number of local searches = 50

Figure 9: Computing time for different number of units. Number of local searches = 80
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4.5 Two-step estimator with refreshment samples.

We describe now the two-step estimator when applied to a dataset that contains re-

freshment samples. Refreshment samples are of interest in economics because they are

common in panel survey datasets, such us for example HRS,ELSA or SHARE. More-

over, there are times in which unbalanced panels with refreshment samples arise from

balanced panels. Think of a situation in which a sample of N individuals is sampled

for T consecutive periods. Moreover, assume that each individual is initially sampled

at a different age. If a researcher wants to estimate a non-stationary hidden Markov

model in which the relevant time dimension is age, as opposed to chronological date,

she will have to deal with the resulting unbalanced panel with refreshment samples.

Estimating this model using the popular Baum-Welch algorithm is going to be com-

putationally expensive, given that with non-stationarity and refreshment samples the

maximization step is no longer available in closed form. This happens because the

transition parameters in {Kτ}
t−1
τ now affect the probability that a given individual is

sampled at state j at time t. In contrast, the two step algorithm is just as simple as in

the balanced panel case. The researcher estimates the cross-sectional parameters using

all available observations at time t and then it calculates Kt in the same way as before,

using as input the empirical joint-frequency of Yt and Yt+1 calculated in the subsample

of individuals observed in t and t+ 1. This is formalized below:

1. For each t = 1, ...T estimate πt (the distribution of the state at t) and {Pmt }m=1,...q

using some consistent and asymptotically normal estimator. Use all available

observations at time t. Re-lable the estimates for Pm and πt according to Assump-

tion 2 Call the corresponding estimates π̂t and P̂mt . Then, the estimator for π0 is

given by: π̂0 and the estimator for Pm is given by:

P̂m =

T∑
t=1

αmt P̂
m
t

with
T∑
t=1

αmt = 1

2. For each t= 1, ...T − 1 estimate Kt as:

K̂t = (Ω̂ ′0tΩ̂0t)
−1Ω̂ ′0tP̂(Yt1,Y1t+1)Ω̂

′
1t(Ω̂

′
1tΩ̂1t)

−1
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where

Ω̂0t = P̂
mΠ̂t

Ω̂1t = Π̂
−1
t+1(P̂1Π̂t+1)

′

where

Π̂t = diag(π̂t) for t= 0,1, ...T

and where P̂(Y1t ,Y
1
t+1) is the joint frequency estimator of P(Y1t ,Y

1
t+1) calculated on

the subsample of individuals observed in t and t+ 1

As it can be seen from the previous description of the estimator, the computation of the

two-step estimator with refreshment samples is almost identical to the computation

of the two-step estimator in a balanced panel. Hence, if in the balanced panel case

the two-step estimator was already faster than Baum-Welch, a fortiori the difference

will be even larger with refreshment samples, since now the maximization step of the

Baum-Welch algorithm has to be carried numerically.

5 Two applications

In this section I show how to exploit my identification and estimation results in two

different contexts. First, I will illustrate how my identification argument can be applied

to a dynamic discrete choice model with an endogenous unobserved state to establish

constructively the identification of the law of motion of that state, the initial distribution

of the unobserved state given the observed state and the conditional choice probabilities

(CCP) of interest. Moreover, I am going to argue that my two-step estimator can be used

to estimate CCP’s, the law of motion of the unobserved state and the initial distribution

of the unobserved state conditional on the observable state. These objects can be used

as a first step towards estimation of structural parameters in a dynamic discrete choice

model, using for example the nested pseudo-likelihood estimator proposed by Aguirre-

gabiria and Mira (2002). My identification result for the CCP’s, intial distribution of the

latent state, and laws of motion for the states has similar data requirements to Hwang

(2021). Like Hwang (2021), I am also able to establish identification of those objects

in a stationary model with T = 2 and three independent noisy measures of the state.
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However, my full column rank assumption for the emission matrices is testable. On the

other hand, Hwang (2021) requires a condition on the Kruskal rank 8 of the emission

matrices, which as she recognizes in footnote 7, it may be difficult to test in practice.

Most importantly, my identification proof of CCP’s, laws of motion of the states and

initial distribution of the unobservable state is constructive, and leads naturally to an

estimator of those objects that is conceptually straightforward and easy to compute.

Second, I am going to apply my results to a child development context to show

that my identification proof provides non-parametric identification of the production

function of cognitive skills when the underlying investments and skills, and their

corresponding noisy measurements, are discrete. The case with discrete investments

and skills is relevant for many reasons. First, it is used in practice in structural models of

child development (see for example Gayle, Golan and Soytas (2015)). Second, existing

non-parametric identification results for continuous investments and skills in the child

development literature (Cunha et al. (2010)) assume that measures are continuous

too. However, commonly used noisy measures of investments and skills are discrete

random variables with very few points of support9. Finally, the discrete case can be

regarded as an approximation to the continuous case.

5.1 Application to a dynamic discrete choice model

The discrete choice model presented here follows closely the one presented in Hwang

(2021). Let Sit and Xit be the unobservable and observable state respectively of agent

i at time t. The unobservable state Sit is assumed to be discrete, and its support is

assumed to have cardinality r. That is:

Sit ∈ {1,2, . . . , r}

8See Hwang (2021) or Allman, Matias and Rhodes (2009) for a formal definition of the Kruskal rank

of a matrix.
9For example, commonly used measures of cognitive skills from C-NLSY 79 include the "Memory

for locations" score and the "Knowledge of body parts" score, each of them with 11 points of support.

The number of points of support is usually even smaller for measures of investment. Examples include

the number of books the child has, with 4 points of support, or whether or not the family owns a CD or

record player, which is binary.
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Denote as

Ωit := [Sit,Xit]
′

the vector of all states of agent i at time t. At each period t each agent i makes an

observable discrete choice cit to maximize her lifetime expected discounted utility Vt,

that is:

Vt(Ωit) = max
c

{vc(Ωit)+ εcit}

vc(Ωit) = u(cit,Ωit)+βEVt+1(Ωit+1|Ωit,cit)

where εcit are choice-specific taste shocks.

I assume that we have access to at least three noisy measures of the unobservable

state {Ymit }
3
m=1. Each of the Ym is assumed to be independent of its own past and future,

the present past and future of other noisy measures; the observable state and choices;

and the past and future of the unobservable state conditional on the unobservable state

today. This is formalized in the following assumption:

Assumption 3. For each t= 1, . . .T and for each m= 1,2,3 the following is true:

Ymt ⊥ {{Ym
′

τ }Tτ=1}m ′,m, {Y
m
τ ,Sτ}τ,t, {Xt,ct}

T
t=1 | St

The conditional distribution of Ym given the unobserved state St are recorded in the

emission matrices Pm, which again are assumed to have full-column rank.

5.1.1 Identification

On top of the full-column rank assumption on the emission matrices Pm, we are going

to need that for each t the distribution of St conditional on Xt,ct has full support.

Moreover, for each t= 1, . . . ,T−1 the distribution of St conditional on Xt+1,Xt,ct has full

support. Provided that this is true, the identification of the CCP’s of interest, the initial

distribution of Sit given Xit and the laws of motion for the states follows naturally from

the identification argument in Section 3.

First, note that we can apply the cross-sectional identification step conditional

on Xt,ct to identify P(St|ct,Xt) for each t. Conditioning only on Xt we can identify

P(St|Xt), again applying the cross-sectional step of the identification proof. Hence, the

conditional choice probability P(ct|St,Xt) is identified since:

P(ct|St,Xt) =
P(St|Xt,ct)P(ct|Xt)

P(St|Xt)
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The initial type distribution P(Si0|Xi0) is identified again from applying the cross-

sectional step conditional on Xi0 for the cross-section at t= 0.

Furthermore, one can show how to achieve identification of the law of motion

P(Si,t+1|Sit,Xt,ct). Let KXt,ctt be given by:

(KXt,ctt )k,j =P(St+1 = j|St = k,Xt,ct)

Moreover, let

πXt,ctt (j) =P(St = j|Xt,ct)

and let ΠXt,ctt = diag(πXt,ctt ). Moreover, let

πXt,ctt+1 (j) =P(St+1 = j|Xt,ct)

and let ΠXt,ctt+1 = diag(πXt,ctt+1 ), and note that this object is also identified (we can apply

the cross-sectional step at t+ 1 conditional on the observables Xt,ct). Then, applying

the longitudinal step of the identification proof in section 3 we can write KXt,ctt as:

KXt,ctt = ((ΩXt,ctt ) ′ΩXt,ctt )−1(ΩXt,ctt ) ′P(Y1t ,Y
1
t+1|Xt,ct)(Ω

Xt,ct
t+1 ) ′((ΩXt,ctt+1 ) ′ΩXt,ctt+1 )−1

where

ΩXt,ctt = P1Π
Xt,ct
t

and

ΩXt,ctt = (ΠXt,ctt+1 )−1P1Π
Xt,ct
t

We can also identify the law of motion of the observed state P(Xt+1|ct,Xt,St+1). Note that

applying the cross-sectional step at t+1 conditional onXt+1,Xt,ct we get P(St+1|Xt+1,Xt,ct).

As argued before, P(St+1|Xt,ct) is identified. Hence, we can identify:

P(Xt+1|St+1,Xt,ct) =
P(St+1|Xt+1,Xt,ct)P(Xt+1|Xt,ct)

P(St+1|Xt,ct)

Finally, if the limited feedback assumption in Hwang (2021) and Hu and Shum

(2012) does not hold, we may also be interested in identifying P(ct+1,Xt+1|St,St+1,ct,Xt).

Under Assumption 3 this is straightforward to do. To see why, note that we can con-

dition on St,St+1,ct,Xt since they are observable. From Theorem 1 the we can identify

P(St+1|St,ct,Xt,ct+1,Xt+1) (again, this is simply Kt conditional on the corresponding
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observables). Conditioning on Xt+1,ct+1,ct,Xt and applying a cross-sectional step at t

we get P(St|Xt+1,ct+1,Xt,ct). Hence

P(St+1,St,Xt+1,ct+1,Xt,ct) =P(St+1|St,ct,Xt,ct+1,Xt+1)P(St|Xt+1,ct+1,Xt,ct)

is identified. Conditioning on Xt,ct only and applying similar arguments one can show

that P(St+1,St,Xt,ct) is identified. Hence, P(Xt+1,ct+1|St+1,St,Xt,ct) is identified as:

P(Xt+1,ct+1|St+1,St,Xt,ct) =
P(St+1,St,Xt+1,ct+1,Xt,ct)

P(St+1,St,Xt,ct)

Note that establishing that limited feeback is indeed an overidentifying restriction

when there are "pure" noisy measures of the state (and the appropiate full-column

rank assumptions and full support conditions hold) opens the possibility to testing this

assumption.

It is worth noting that Assumption 3 is stronger than needed. In principle, in

order to apply the cross-sectional identification steps, one only needs Y1t ,Y2t ,Y3t to be

independent given Xt+1,ct,Xt,St, given Xt,ct,St, and given Xt−1,ct−1,St. For the initial

cross-sectional step (to identify the distribution of S0 given X0) one only needs Y10 ,Y
2
0 ,Y

3
0

to be idenpendent given S0,X0. And to apply the longitudinal step of the identification

results in section 3 one only needs Assumption 1 to hold conditional on Xt,ct for every

Xt,ct and for every t = 1, ...T − 1. Presenting the identification results under a more

restrictive assumption is done for the sake of clarity.

Finally, it is worth noting that even if no noisy measure of the unobserved state is

observed twice (see Appendix B), we can still identify all the reduced-form probabilities

of interest, without assuming stationarity of the unobserved state or without placing

further restrictions on P(Xt+1|Xt,ct,St). This strengthens the results in Hwang (2021).

5.1.2 Estimation

The logic behind this constructive identification proof can be applied to estimation of

CCP’s, to the initial distribution of the unobserved state given the observed state and

to the laws of motion of the unobserved state and the observed state. More concretely,

the two-step estimator presented before can be used to estimate those objects at a low

computational cost.

For estimation, I am going to assume that the variables contained in the observable

state vector Xit are discrete. As before, P̂() is going to denote a frequency estimator.
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Estimating the conditional distributions of the noisy measures {Pm}3m=1 Estimates of

the Pm’s, call them P̂m can be obtained by performing the first step of the cross-sectional

step of the two-step estimator presented in section 4.

Estimating the initial distribution of the unobservable state P(S0|X0)

Restrict the sample at t = 0 to observations with observable state X0. Perform a

cross-sectional estimation step, using Maximum Likelihood and the EM algorithm

or the approximate joint-diagonalization estimator of Bonhomme et al. (2016). The

resulting estimated probability distribution for the unobservable state is
√
n consistent

and asymptotically normal estimator for P(S0|X0)

Estimating CCP’s P(ct|St,Xt)

Restrict the cross-sectional sample at t to observations with observable choices

and states ct,Xt. Perform a cross-sectional estimation step as discussed above. The

associated estimator of the probability distribution of the unobservable state gives

an estimator for P(St|ct,Xt), call it P̃(St|ct,Xt). Do the same, now restricting attention

to observations with observable state Xt (that is, do not use the observable choice to

restrict the sample). The associated estimate for the distribution of the unobservable

state yields an estimator for P(St|Xt), call it P̃(St|Xt). Finally, calculate the frequency

estimator P̂(ct|Xt). The estimator for the CCP’s is given by:

P̃(ct|Xt,St) =
P̃(St|Xt,ct)P̂(ct|Xt)

P̃(St|Xt)

Estimating P(St+1|St,Xt,ct)

Restrict the cross-sectional samples at t and t+ 1 to observations with observable

state vector Xt and observable choice ct. Calculate P̂(Y1t ,Y
1
t+1|Xt,ct), the joint sample

frequency of Y1t ,Y1t+1 in this sub-sample. Perform a cross-sectional step in these two

sub-samples and get the estimate cross-sectional distributions of the unobserved state

π̂Xt,ctt and π̂Xt,ctt+1 . Calculate:

K̂Xt,ctt = ((Ω̂Xt,ctt ) ′Ω̂Xt,ctt )−1(Ω̂Xt,ctt ) ′P̂(Y1t ,Y
1
t+1|Xt,ct)(Ω̂

Xt,ct
t+1 ) ′((Ω̂Xt,ctt+1 ) ′Ω̂Xt,ctt+1 )−1

where

Ω̂Xt,ctt = P̂1Π̂
Xt,ct
t

and

Ω̂Xt,ctt = (Π̂Xt,ctt+1 )−1P̂1Π̂
Xt,ct
t
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and where

Π̂Xt,ctt = diag(π̂Xt,ctt )

The (i, j)-th element of that matrix contains a
√
n consistent and asymptotically normal

estimator of P(Si,t+1 = j|Si,t = i,Xt,ct).

Note that P̂1 can be obtained in many ways. For example, it can be obtained by

performing a cross-sectional step in the whole sample or by performing a cross-sectional

step conditional on observable states or choices.

Estimating the law of motion of the observable state P(Xt+1|ct,Xt,St+1)

Restrict the sample to observations with observable state at t+ 1, observable state

at t and observable choice at t given by (Xt+1,Xt,ct). Perform a cross-sectional step at

t+1 on this subsample to get an estimate of P(St+1|Xt+1,Xt,ct), call it P̃(St+1|Xt+1,Xt,ct).

Estimate P(Xt+1|ct,Xt,St+1) as:

P̃(Xt+1|St+1,Xt,ct) =
P̃(St+1|Xt+1,Xt,ct)P̂(Xt+1|Xt,ct)

P̃(St+1|Xt,ct)

Note that P̂(Xt+1|Xt,ct) is just a frequency estimator, and the estimation of P̃(St+1|Xt,ct)

was discussed before.

Estimating P(Xt+1,ct+1|St+1,St,Xt,ct) if limited feedback is not assumed to hold.

Restrict the sample to inidviduals with a particular value of Xt+1,ct+1,Xt,ct. Applying

the cross-sectional estimation step at t+1 yields P̃(St+1|Xt+1,ct+1,Xt,ct), an estimator of

P(St+1|Xt+1,ct+1,Xt,ct). Applying the longitudinal step yields P̃(St+1|St,Xt+1,ct+1,Xt,ct),

an estimator of P(St+1|St,Xt+1,ct+1,Xt,ct). Restricting the sample to individuals with

values Xt,ct and doing the same yields P̃(St+1|St,ct,Xt) and P̃(St+1|ct,Xt) respectively.

The estimator for P(Xt+1,ct+1|St+1,Xt,ct,St) is given by:

P̃(Xt+1,ct+1|St+1,Xt,ct,St) =
P̃(St+1|Xt+1,ct+1,St,ct,Xt)P̃(St+1|Xt+1,ct+1,ct,Xt)

P̃(St+1|,St,ct,Xt)P̃(St+1|,ct,Xt)

5.2 Identification and estimation of a production function for cogni-

tive skills

5.2.1 Setting

Children are observed for T > 2 developmental periods. For each period t, three

discrete noisy measures of cognitive ability θ̃1t , θ̃2t , θ̃3t and three discrete noisy measures

of investment Ĩ1t , Ĩ2t , Ĩ3t are observed.

36



These measures of cognition and investment are assumed to be "pure" noisy mea-

sures of true investment and cognition respectively. This is formalized in the following

two assumptions:

Assumption 4.

Ĩmt ⊥ {{Ĩm
′

τ }Tτ=1}m ′,m, {{θ̃
m}Tτ=1}m=1,2,3, {θ}

T
τ=1, {Ĩ

m
τ }τ,t |It

Assumption 5.

θ̃mt ⊥ {{θ̃m
′

τ }Tτ=1}m ′,m, {{Ĩ
m}Tτ=1}m=1,2,3, {I}

T
τ=1, {θ̃

m
τ }τ,t |θt

That is, conditional on true investment, the noisy measures for investment are

independent of everything else, including their own past and future; other present, past

and future noisy measures of investment and skills; and the present past and future

of true unobserved skills. Noisy measures of skills are also assumed to be pure noisy

measures of skills, and hence a similar conditional independence condition apply to

them. The support of noisy measure θ̃m has cardinality κmθ . Similarly, the support of

noisy measure Ĩm has cardinality κmI .

Let (PmI )i,j = P(Ĩm = i|I = j) and (Pmθ )i,j = P(θ̃m = i|θ = j). Both PmI and Pmθ are

assumed to have full column rank.

Both true unobserved cognitive skill θ and true unobserved investment I are as-

sumed to be discrete too, and have support with cardinality rθ and rI respectively.

Finally, the relationship between Ĩ1 and θ̃1 and I and θ respectively is assumed to be

monotonic, in a sense clarified by the following two assumptions:

Assumption 6. P(θ̃1 = κ1θ|θ= j)>P(θ̃1 = κ1θ|θ= j
′) ∀ j ′ < j

Assumption 7. P(Ĩ1 = κ1I |I= j)>P(Ĩ1 = κ1I |I= j
′) ∀ j ′ < j

Assumption 6 says that the probability of observing the highest possible value of θ̃1

is increasing in true cognitive skill θ. Assumption 7 has a similar interpretation.

Note that Assumptions 6 and 7 are unnecesarily strong, given that an assumption

like Assumption 2 will still be enough for identification in this context. I explain the

results using 6 and 7 for the sake of clarity.

Finally, it is worth noting that not all the noisy measures need to be available at each

developmental period for identification. This is shown in Appendix B.
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5.2.2 Identification

We are interested in identifying P(θt+1|θt, It) for t= 1, ...T − 1 and P(θt, It) for t= 1, ...T

from the probability distribution of {{θ̃m, Ĩm}m=1,2,3}
T
t=1. It turns out that one can use the

constructive identification proof presented in Section 3 to establish the identification of

the objects of interest.

First, note that we can map the pair of unobserved states (θ,I) to a uni-dimensional

unobservable state as follows:

{(1,1),(1,2), . . .(rθ, rI)}−→GS
{1,2, . . . rθ× rI}

where the mapping GS is given by:

GS(θ,I) = (θ− 1)× rI+ I

Note that GS is one-to-one and its inverse is given by:

(GS)−1(n) =
(
1+max

{
0,
⌈n
rI

− 1
⌉}
, n−max

{
0,
⌈n
rI

− 1
⌉}
× rI

)
where dxe stands for the ceiling of x.

Using the mapping GS we can write the pair of unobservable states (θ,I) as a uni-

dimensional state:

St =G
S(θ,I)

Since we want to have three noisy measures of the unobservable state, we can form

pairs of noisy measures as follows:

(θ̃1, Ĩ1),(θ̃2, Ĩ2),(θ̃3, Ĩ3)

Applying to each of those pairs a mapping similar to the one applied to the true

unobservable state we get three noisy measures Y1,Y2,Y3.

More concretely, let Gm be given by:

Gm(θ̃m, Ĩm) = (θ̃m− 1)× κmI + Ĩm

Then Ym is given by:

Ym =Gm(θ̃m, Ĩm)

Again, note that Gm is one-to-one and its inverse is given by:

(Gm)−1(n) =
(
1+max

{
0,
⌈ n
κI

− 1
⌉}
, n−max

{
0,
⌈ n
κI

− 1
⌉}
× κI

)
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Assumptions 4 and 5 ensure that Y1,Y2,Y3 are conditionally independent given the

unobservable state St. Moreover, they also ensure that assumption 1 in Section 3 is

satisfied. Let Pm be defined as in Section 3. Since PmI and Pmθ are full-column rank, Pm is

full-column rank, given that:

Pm = Pmθ ⊗PmI

where ⊗ denotes the Kronecker product. Hence, the only thing that remains to check, in

order to apply Proposition 1 is that for each t πt(c)> 0 for every c, where again πt(c)>

0 :=P(St = c). Note that this assumption is not as strong as it may seem, given that the

location of the unobserved skills can be thought of as being re-normalized at each age.

This escapes the critique in Agostinelli and Wiswall (2016) because the technology of

child development (in this case a transition function) is left completely unrestricted.

Moreover, the requirement that given a level of skill, each level of investment has

positive probability will hold if parents are subject to taste shocks to investment and

these have support in all the positive real line.

If this condition holds, Theorem 1 1 ensures that πt for t = 1, ...T and Kt[i, j] :=

P(St+1 = j|St = i)
10 for t= 1, ...,T − 1 are identified. Note that this identifies the objects

of interest since:

P(θt, It) = πt(G
S(θt, It))

and

P(θt+1 = i
′
θ, It+1 = i

′
I|θt = iθ, It = iI) = Kt[G

S(i ′θ, i
′
I),G

S(iθ, iI)]

P(θt+1|θt, It) =

rI∑
i ′I=1

P(θt+1, It+1 = i
′
I|θt, It)

Finally, note that Assumptions 6 and 7 allow us to re-lable parameters according to P1

in a way that is consistent with the ordering of θ and I.

As a concluding remark for this section, it is worth noting that the previous identifi-

cation proof can acomodate more unobservable characteristics, such as non-cognitive

ability. The idea is that if those are discrete, and we have at least 3 conditionally inde-

pendent noisy measures for them, all the unobservables can again be combined into

one uni-dimensional unobservable state and the previous identification result follows

through.

10For the sake of readibility, I am using now A[i, j] to denote the i, j element of matrix A
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5.2.3 Estimation

Estimation of the technology of cognitive development P(θt+1|θt, It) and of P(θt, It)

follows essentially the same steps as identification.

Suppose that a researcher has access to a sample of noisy measures of cognitive

skills and investment {θ̃m, Ĩm}m=1,2,3. Note that if more than three noisy measures are

available, then they can be combined into three. Estimation of the parameters of interest

proceed as follows:

1. Define new noisy measures

Ym =Gm(θ̃m, Im)

where Gm has been defined before.

2. Apply the two-step estimator to the sample {{Ymt }m=1,2,3}t=1,...,T

3. Calculate estimates for the objects of interest as:

P̂(θt, It) = π̂t(G
S(θt, It))

and

P̂(θt+1 = i
′
θ, It+1 = i

′
I|θt = iθ, It = iI) = K̂t[G

S(i ′θ, i
′
I),G

S(iθ, iI)]

P̂(θt+1|θt, It) =

rI∑
i ′I=1

P̂(θt+1, It+1 = i
′
I|θt, It)

When applying the two-step estimator, it is important to re-lable the entries of π̂t and

the columns of P̂m according to Assumptions 6 and 7.

6 Conclusion

This paper provides a novel identification proof for non-stationary hidden Markov

models that is applicable when three or more noisy measures of the hidden markovian

state are observed. The identification argument presented in the paper breaks the prob-

lem of identification into two sub-problems: First, some parameters are identified using

existing identification results for finite mixture models with discrete measurements.

Then, the transition parameters are identified using information from the first step and
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longitudinal observations. In particular, my result yields identification of a stationary

hidden Markov model with two periods, the same number of periods necessary for

identification if the hidden state was observable.

Additionally, this paper proposes a
√
n consistent and asymptotically normal es-

timator for non-stationary hidden Markov models. This estimator is essentially a

finite-sample analogue of the constructive identification proof. The estimator is easy to

implement, faster than Baum-Welch (a popular estimation algorithm to find the MLE

for hidden Markov models) , conceptually straightforward and more robust than MLE.

Moreover, for large datasets the loss in precision of my estimator with respect to maxi-

mum likelihood seems to be negligible, and the gain in computing time considerable.

Computational gains are likely to be even more important in a dataset that contains

refreshment samples.

Finally, the paper shows how the identification and estimation results can be applied

in two different contexts: dynamic discrete choice models and child-development.

When applied to the dynamic discrete choice models, the results in this paper

provide a novel proof of identification of CCP’s, initial conditions and laws of motion.

Moreover, the estimators presented in this paper allow to estimate these objects in a

tractable way.

In the child development context, the identification result establishes non-parametric

identification of a production function of children’s skills using discrete measurements,

when skills and investments are themselves discrete too. The estimators presented in

this paper also provide a tractable way of estimating that technology.

A Writing P(Y10 ,Y
1
1) in terms of parameters

We want to show that:

P(Y10 ,Y
1
1) = P

1Π0K0Π
−1
1 (P1Π1)

′
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Remember that Πt = diag(πt). Hence, note that:

P1Π0 =
(
P(Y10 |S0 = 1) . . .P(Y10 |S0 = r)

)
π0(1)

. . .

π0(r)


=
(
π0(1)P(Y10 |S0 = 1) . . .P(Y10 |S0 = r)

)
=
(
P(Y10 ,S0 = 1) . . .π0(r)P(Y10 ,S0 = r)

)
where P(Y10 |S0 = j) is a column vector that represents the distribution of Y10 conditional

on S0 = j and P(Y10 ,S0 = j) is a column vector whose i-th element gives the probability

of Y10 = i and S0 = j. From here we get:

(
P1Π0K0

)
i,j
=

r∑
c=1

P(Y10 = i,S0 = c)P(S1 = j|S0 = c)

Hence, under A1 we get: (
P1Π0K0

)
i,j
=P(Y10 = i,S1 = j)

Multiplying by Π−1
1 we get:(
P(Y10 ,S1=1)
π1(1)

. . .
P(Y10 ,S1=r)
π1(r)

)
=
(
P(Y10 |S1 = 1) . . .P(Y10 |S1 = r)

)
Finally we have to multiply by (P1Π1)

′. Note that P1Π1 is a matrix whose j-th column is

the vector with i-th element equal to P(Y11 = i,S1 = j) as seen before for the analogous

case of period 0. Therefore:

(
P1Π0K0Π

−1
1 (P1Π1)

′
)
i,j
=

r∑
c=1

P(Y10 = i|S1 = c)P(Y11 = j,S1 = c)

Under A2 this is equivalent to:(
P1Π0K0Π

−1
1 (P1Π1)

′
)
i,j
=P(Y10 = i,Y

1
1 = j)

as we wanted to show.

Note that in order to derive this expression we didn’t use that the hidden stater is

first order Markov. Rather, we have only use that Kt contains the first order transition

probabilities. Hence, my identification result is useful to identify first order transition

probabilities even if the hidden state is not first order Markov.
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B Identification with no measure observed twice

The identification result in Theorem 1 was derived under the assumption that the same

three measures Y1,Y2,Y3 are available at every period t = 0, . . .T − 1. It turns out that

this requirement is not essential. In fact, identification can be obtained even if no noisy

measure is observed twice. Before proving that identification can be in this case, we

need again assumptions on the dynamics of the measures given the true underlying

state.

Assumption C1. For each t= 0, . . .T − 1 there are measures Y1,tt and Y1,t+1t+1 such that:

i) P(St+1|St,Y
1,t
t ) =P(St+1|St)

ii) P(Y1,tt |St+1,Y
1,t+1
t+1 ) =P(Y1,tt |St+1)

Note that measures Y1,tt and Y1,t+1t+1 can be different measures (In particular, they

can have different conditional distributions given their contemporaneous unobserved

state). The first part of C1 says that once we know the unobserved state at t, we cannot

better predict the unobserved state at t+ 1 by knowing Y1t at t. The second part of the

assumption says that knowing Y1,t+1 at t+1 doesn’t help us predicting Y1,t at t once we

know St+1. Note that these assumptions generalize 1 to the case in which no measure is

observed twice. 3 establishes identification when there are no repeated measures:

Theorem 3. Suppose that at each t = 0. . .T − 1 three conditionally independent measures

of the state Y1,tt ,Y2,tt ,Y3,tt are observed. Moreover, suppose that for each t, the cross-sectional

distribution of the state πt has no zero elements and Pm,t (the conditional distribution of Ym,tt

given St) has full-column rank. Then under C1 the model is identified.

Proof. Again, from Theorems 1-3 in Bonhomme et al. (2016) πt and {Pm,t}m=1,2,3 are

identified for every t.

From a reasoning similar to the one in Appendix A we get that:

(
P1,0Π0K0

)
i,j
=

r∑
c=1

P(Y100 ,S0 = c)P(S1 = j|S0 = c)

Under Assumption C1 i) this is equivalent to:(
P1,0Π0K0

)
i,j
=P(Y1,00 ,S1)
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Post-multiplying by Π−1
1 we get:(

P1,0Π0K0Π
−1
1

)
i,j
=P(Y1,00 = i,S1 = j)

for i= 1, . . .κ1,0 and j= 1. . . r , where κ1,0 is the cardinality of Y1,0. Therefore:(
P1,0Π0K0Π

−1
1 (P1,1Π1)

′
)
i,j
=

r∑
c=1

P(Y1,00 = i|S1 = c)P(Y1,11 = j,S1 = c)

Under C1 ii) this is equivalent to:(
P1,0Π0K0Π

−1
1 (P1,1Π1)

′
)
i,j
=P(Y1,00 = i,Y1,11 = j)

Hence we have that:

P(Y1,00 ,Y
1,1
1 ) = P1,0Π0K0Π

−1
1 (P1,1Π1)

′

Since π0,π1 have non-zero entries and P1,0 and P1,1 are full-column rank this implies:

K0 = (Ω ′0Ω0)
−1Ω ′0P(Y1,00 ,Y

1,1
1 )Ω ′1(Ω

′
1Ω1)

−1

where this time Ω0 and Ω1 are defined in the following way:

Ω0 = P
1,0Π0

Ω1 = Π
−1
1 (P1,1Π1)

′

The proof for Kt with t= 1, . . . ,T − 1 follows similar steps.

C Montecarlo for two-step estimator with refreshment

samples.

The data is generated according to the model described in the identification section

with r= 2 and T = 3. In particular, I let K1 and K2 be different, so the data is generated

according to a non-stationary process. More precisely, I let K1 and K2 be given by:

K1 =

0.8 0.2

0.2 0.8



K2 =

0.6 0.4

0.5 0.5
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Moreover, the emission matrices are given by:

P1 =


0.1 0.5

0.7 0.3

0.2 0.2



P2 =


0.2 0.4

0.6 0.2

0.2 0.4



P3 =


0.25 0.35

0.55 0.25

0.2 0.4


The initial distribution of the state is given by:

π0 = (0.3,0.7)

Since emission matrices are full-column rank and Kt has non-zero columns for

t= 1,2, so the conditions for identification are met. Since we are interested in the case

with refreshment sample, 8N individuals are sampled in the first period, 3N individuals

in the second and N individuals in the third. In order to make the refreshment samples

respresentative of the cross-section of individuals at t = 2 and t = 3 respectively, the

individuals of the refreshment sample are generated from t= 1, but information prior

to the period they are sample in is truncated and recorded as missing.

For the first stage of the two step estimator I use Maximum Likelihood and the

EM algorithm to estimate the cross-sectional parameters at t = 1,2,3. I use equal

weights when taking weighted averages of the period-specific estimates of the emission

matrices. 10 shows the sup-norm of the Mean Absolute Error for the emission matrices

and the initial distribution of the hidden state for N = 100,1000 and 8000. In order

to calculate the sup-norm of the Mean Absolute Error for say, P1, I find the absolute

difference between each element of P̂1 and the corresponding element of the true

emission matrix P1. Then, we find the average of this matrices of absolute differences

across 20 montecarlo experiments, and I take the maximum of the resulting matrix. In
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other words, I calculate:

MAE(P1) = max
i,j

1

20

20∑
m=1

|P̂m1 (i, j)−P1(i, j)|

11 shows the sup-norm of the Mean absolute error for the estimates of K= [K1,K2] (that

is, the four-dimensional array that contains K1 and K2). As we can see in both graphs,

the maximum mean absolute error decreases for all parameters as the sample-size gets

bigger, which is in line with the consistency result.

Figure 10: Mean absolute error for different sample sizes
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Figure 11: Mean absolute error for different sample sizes

D Baum-Welch algorithm

The Baum-Welch algorithm is mentioned throughout the text, and used as a benchmark

for precision and computational cost for the two-step estimator. In order to make the

paper more self-contained, I am going to describe the Baum-Welch here.

The Baum-Welch algorithm is a particular application of the popular EM algorithm

to hidden Markov models. Hence, it has an expectation and a maximization step. In

the expectation step, the filtered probability of being in each hidden state are calculated

given a guess for the parameters. This is done efficiently by using an iterative procedure.

In the maximization step, new guesses for the parameters are found by maximizing the

expected log-likelihood, which can be done in closed form (although, as I explain in the

text, this tractability breaks down with refreshment samples and non-stationarities).

These two steps are repeated until convergence.

I explain this formally below:

Let

yit = (y1it,y
2
it,y

3
it)

and let yT
i be the whole history of yit from 0 to T . Let yT = {yT

i}
N
i=1
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Denote:

P(yit,c) := P
1(y1it,c)P

2(y2it,c)P
3(y3it,c)

Start the algorithm with a guess of parameters θ(0) = (π
(0)
0 , {(P

m)0}m=1,2,3, {K
0
t }
T−1
t=1 )

• Expectation step At iteration h the guess for parameters is given by θ(h). Let

αir(t) =P(yi0, ...yi,t,Sit = r|θ) be the "backward probabilities". These can be calcu-

lated as:

αis(0) = π0(r)P(y0i, s)

αis(t+ 1) =

m∑
c=1

αic(t)Kt(c,s)P(yi,t+1, s)

Moreover, define βis(t) =P(yi,t+1, ...yi,T |St = s) This can be calculated as:

βis(T) = 1

βis(t) =

m∑
c=1

Kt(s,c)βic(t+ 1)P(c,yi,t+1)

Define

ûitj =P(Sit = j|yT
i)

v̂itjk =P(Sit−1 = j,Sit = k|yT
i)

Once we calculated β and α we can use them to calculate the posterior probabili-

ties (the "hat" variables) as follows:

ûitj =
P(Si,t,yT)

P(yT)
=

αi,j(t)βi,j(t)∑r
j=1αi,j(t)βi,j(t)

v̂itjk =
P(Si,t−1,Sit,yT)

P(yT)
=

αi,j(t− 1)Kt−1(j,k)P(yi,t,k)βi,k(t)∑m
k=1

∑r
j=1αi,j(t− 1)K(j,k)P(yi,t,k)βi,k(t)

• Maximization step For a guess of parameters θ(0) , and the complete history of

noisy measures yT , the expected complete log-likelihood is given by:

Eθ(0) [logLc(θ)|yT ] =
N∑
i=1

{ r∑
j=1

ûi0j logπ0(j)+
T∑
t=1

r∑
j=1

r∑
k=1

v̂itjk logK(j,k)

+

T∑
t=0

r∑
j=1

3∑
m=1

κm∑
y=1

ûitj1(y
m
it = y) logPm(yi,t, j)

}
The new guess can be calculated in closed form as:

π
(h+1)
0 (r) =

1

N

N∑
i=1

ûi0r
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K(h+1)(j,k) =

∑N
i=1

∑T−1
t=0 v̂itjk∑r

j=1

∑N
i=1

∑T−1
t=0 v̂itjk

(Pm)(h+1)(j,k) =

∑N
i=1

∑T
t=0 1(y

m
it = j)ûitk∑N

i=1

∑T
t=0 ûitk

This new guesses are used to find the filtered probabilities in the next step and

the process is repeated until convergence.
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